Evolution of testing techniques:
From active testing to
monitoring techniques

Show the evolution of active testing
to monitoring (passive testing)
techniques

Explain the differences and
complementarity of these
techniques

Present some representative
examples

o Our research model is based in:

- Basic and applied research
- Evaluation of results in real environments

- Strong collaboration with industrial partners

upDi

E{I
(&
1§

SOAPIXML

Figure 1: The process flow of a Web service

» Testing: The process of executing software with
the intent of finding and correcting faults

» Conformance testing: The process of checking if
the implementation under test conforms the
specification

Two techniques: active and passive testing (monitoring)

This presentation will focus mostly on monitoring, but
there are many common objectives and challenges with
active testing

-~ - -

- g . - - =

E 4 - A — e T Tea ¥V % - ey B -

D ——
PASS,

FAIL,
INCONC.

Formal
Specification

Usually called Model Based Testing (MBT)

It is assumed that the tester controls the implementation. Control
means: after sending an input and after receiving an output, the
tester knows what is the next input to be send

The tester can guide the implementation towards specific states
Automatic test generation methods can be defined

Usually a test case is a set of input sequences

SE A

\y\

=
)

9,

Vhat is monitoring (passive testing

j\ D)

) ?

@

[

~PO

N I B Trace Verdict:
|| Collection PASS,
1 V FAIL,

~ System User - INCONC.

Passive testing consists in analyzing the traces recorded from the
IUT and trying to find a fault by comparing these traces with either
the complete specification or by verifying some specifics
requirements (or properties) during normal runtime

No interferences with the IUT
It is also referred to as monitoring

{l‘?ﬂ“{ . ?/I 7\ /’[f'_f r/:I'f,"/“/,{uVﬁ G R BTG W 7///// 7/%

G
v’\ﬂ%«{ﬁlﬂ, i _’:,,
: kI

l\ ¢
I
X 1 i
st

LA
;;'v\

‘—-q

AN

g \\:}\u
Wiy k\
o
'.'*}0{% . ‘

.

\\,-.-og_*"'_ e — TPy ——

B

-
L

-

l%‘

0.0

RO
N S

——
oy

....-
i e
e N

‘f

a ,-_S.S’_\ 2

Specification

2€ [OK
— T

1 1€/another1€© 1€/0K /4

Choice / Soda, Juice

I1
2€ [yet another 1€

@ther 1€ ‘ 1€D

Choice / Soda, Juice

___~output fault

I2
2€ / OK transfer fault

A
1€ / another 1€ | 1€ | OK

Choice / Soda, Juice

I3
1€ / another 1€

Choice /

Soda, Juice 1€/ 0K

2€ [OK

» How to bring the finite state machine
implementation into any given state at any given
time during testing ?

Non trivial problem because of limited

controllability of the finite state machine
implementation

It may not be possible to put the finite state
machine into the head state of the transition
being tested without realizing several transitions

Controllable Non controllable

Specification Impl Imp2

[a’ b [a/b aly \a/b
Controllable under fairness
assumption

Imp3 Imp4 Imp5

a/%\s/b s/b/\a/b a/b /\a/c

Non controllable

» How to verify that the finite state machine
implementation is in a correct state after
input/output exchange?

State identification problem. Difficult because of limited
observability of the finite state machine implementation, it
may not be possible to directly verify that the finite state

machine is in the desired tail state after the transition has
been fired

» To solve this problem different
methods have been proposed:
DS (Distinguishing Sequence)
UIO (Unique Input/Output Sequence)
W (Distinction Set)

c/x Define an input sequence for each state
5 such that the output sequence

generated is unique to that state.
Detects output and transfer faults.

State UIO sequences
S1 c/x
S2 c/y
S3 b/y

cl/z Testof (1): a/y a/xb/y
Test of (2): a/y c/zb/y

b/X

J

c/x

Test of (1): a/y a/x b/y
Test of (2): a/y c/z b/y

Application du test of (1) to
the implementation: a/y a/x
b/z (transfer error)

Application of test (2) to
the implementation:
a/y c/x (output error)

Faulty Implementation

Non applicable when no direct access to
the implementation under test

Semi- controllable interfaces
(component testing)

Interferences on the behaviour of the
implementation

» Test in context, embedded testing:

O Tests focused on some
components of the system, to
avoid redundant tests

Environment

ab’cc’ b a’

O Interfaces semi-controllables

O In some cases it is not possible to
apply active testing

Conformance testing is essentially focused on
verifying the conformity of a given implementation
to its specification

It is based on the ability of a tester that stimulates the
implementation under test and checks the correction of the

answers provided by the implementation
Closely related to the controllability of the IUT

In some cases this activity becomes difficult, in particular:
if the tester has not a direct interface with the implementation

or when the implementation is built from components that have
to run in their environment and cannot be shutdown or
interrupted (for long time) in order to test them

» Controllability

No controllability issue because no interaction with the
implementation under test

» Observability

It is assumed that to perform passive testing it is necessary to
observe the messages exchanges between modules.

Passive testing is a Grey Box testing technique

» Fault detection using passive testing

It is possible to detect output faults

It is possible to detect transfer faults under some hypothesis:
to initialise the IUT in order to be sure that the
implementation is in the initial state and then perform passive
testing

In this approach a set of properties are extracted from the
specification or proposed by the protocol experts, and then
the trace resulting from the implementation is analyzed to
determine whether it validates this set of properties.

These extracted set of properties are called invariants
because they have to hold true at every moment.

» Definition: an invariant is a property that is
always true.

» Two test steps:

Extraction of invariants from the specification or
proposed by protocol experts

Application of invariants on execution event
traces from implementation

* Solution: I/O invariants

_©

» An invariant is composed of two parts :
o The test (an input or an output)
o The preamble (I/O sequence)

» 3 kind of invariants :
o Output invariant (simple invariant)

o Input invariant (obligation invariant)
o Succession invariant (loop invariant)

Definition : invariant in which the test is an
output

Meaning : « immediatly after the sequence
préambule there 1s always the expected
output »

Example :

(i, / 0,) (i, / 0,)

(preambule in blue, expected output in red)

Definition : invariant in which the test is an
input

Meaning : « immediatly before the sequence
preamble there is always the input test »

Example :

(i, /0,) (i, / 0,)

(preamble in blue, test in red)

» Definition : I/O invariant for complex
properties (loops ...)
» Example :

the 3 invariants below build the property :
« only the third i, is followed by o, »

(i, /0 (1, / 0,)
(1, /0,) @,/ 0,) (i, / 0,)
(1, /0, (,/0,) (A, /0,) (i, / 0,)

O A trace as 1,/0,,..., 1../0Ox+,1./O 1s a simple invariant if each
time that the trace i./0.,..., 1../0..1s observed, if we obtain
the input i.then we necessarily get an output belonging
to O, where O is included in the set of expected outputs.

o 1/0, *, /0O means that if we detect the transition i/o
then the first occurrence of the symbol i’ is followed by
an output belonging to the set O.

O *replaces any sequence of symbols not containing the
input symbol i’ and ? replaces any input or output.

Invariants | Verdict
al?,clz, by} | True
b/z, al{x} False
a/lx, *, bl{y, z} | True
aly, 2/{z} False
al{x} False
alx, *, 2{y} True

3)= ax
Traces
a/yc/zb/yalya/xc/zb/y
c/xa/ya/xc/zb/y

c/ya/xb/zb/xaly

e Ie=——> Verdict: © Possibility to focus on a

PASS, FAIL, specific part of the
INCONC. specification
l © Full test generation
automation

Formal
Specification

@ Needs a model
@ May modify (crash) the IUT

behavior
C:I:::::'JU — Passive Tester N © No interferences with the IUT
I Collection PASS,FAIL, © No models needed

INCONC. © Full monitoring automation
| System User | i
® Grey box testing

Approach proposed by researchers of verification
(model checking) community

Passive testing developed by the testing
community

EAGLE and RuleR tools proposed by Barringer
and al. in 2004 and 2010 respectively, based on
temporal logics and rewriting rules for properties
description

Others tools: Tracematches, [Avgustinov et al.

2007], J-LO [Bodden 2005]and LSC [Maoz and
Harel 2006]

Monitoring the traces of a running system (e.g.,
traffic or message flows), online or offline.

Non-obtrusive (i.e., execution traces are
observed without interfering with the behaviour
of the system).

Analyzing collected data according to functional
and non-functional requirements:

Security properties described in a formal specification (temporal logic ,
regular expressions, describing behaviour involving several events over time).

Performance to get real time visibility over the traffic statistics, KPI,
delivered QoS, etc.

Extended to perform counter-measures.

Monitoring tool (MMT) description

Views
Definitions

Configuration

Configuration

Extracted Events
& Parameters

Verdicts
notification

Protocol
plugins \

Defined

Properties
Base

MMT in a transport network scenario

Access Point

INTER-TRUST project. Three-year
project with many academic and
industrial partners

Security properties of services

Detection of attacks using active and
monitoring techniques

* Why testing ? (testing phase)

Vulnerabilities can be introduced by AOP (Aspect Oriented
Programming) used in Inter-trust

Functional testing

Check the respect of weaved security policies (aspects)
Check the robustness of the target application

Detect vulnerabilities

Simulate attacks

» Why monitoring ? (testing & operation phases)
Same as above
+ detecting context changes (context awareness) at runtime

Model based testing: TestGen-IF

Application FSM
Model (IF)

Abstract
Security
Tests

y
o
Test Engineer
Test Purposes

| Requirements |

Evoting application : montima g e
Security
Properties

Model based testing: TestGen-IF

Application FSM
Model (IF)

| Requirements |-

I
Security
Tests e

4
S
Test Engineer
Test Purposes —a .
e | - =
Requirements —

Evoting application

(<) montimage
Security
Properties

lasiadlogin, password) f access denied e o

Elections - Logged as Bob

Question L1.1

AL Sports

Syl L Inferest market 1Ser
ons
LopOut Signedin as loginl
Veting Receipt Stepdof3
our vote has been issued comecty. The vofing receiptis your receipt document W recammend hatyou printit. =

Question L1.2

i

The E-voting
application has been
specified as an
extended finite state
machine (IF
language)

{e12Eame/NnPT+uTkB azEHdrXasBCZyPXLVhVH/UhDog8Qznh GUNyZYqNfaqBUCYvmpven3sCQEHoJ8f kT94wSmkMatChbend + i6VYk/hei -\
DkSBGA1rex8NJaLuSCYFUBJMn vddubFuYCOK2xKSRTAXvSVI6.0!jBge +uS6QesdI6LelSRdk2eKvasKurhghv tby

\1 This state presents the

\

In this step the vote
choices are displayed.
The user has to fill the
vote form. The step is
the effective vote

- y

Valat m‘) W [~

T =3 a B =

L1 CSL Uu_! VU‘tl\V cS bpuwi;;uat;u;;

Test generation with TestGen-IF

kagind iin, passwaord) [/ access dened
Test Objective .
(Setdietalle legin(log in password) / access_authorized
Description
The tester chooses specific sets of privacy ocptions. - exit

Cur objective is to check the behavior of the systermn
when the user chooses a certain
combination of privacy options.

optionsiop1,0p2,op3) / ok

i [cond=nokjchoose{votes)

W
Formal specification

ond=ok]choose{voles]
obji = condl “cond2"*cond3"cond4"cond5 fori=1...27 - ke I votes) Q

condl = process: instance = {server}d

cond2 = state: source: privacy_optio

cond3 = state: destination: electi

condd = action: input

options{optionpoplj onpop3l) change{options}
L

4 O

This part of the TestGen-IF tool aims

to choose the test objective. Each test

objective is presented with its —
. description and formal specification.

N /

- & - - - - - -
s Wy e W Ny LT A “F ¥ A F W - 2T LAY ¥

1 swi Appication s Oy s _'.__ JE‘&‘Q‘

— =
Test generation with TestGen-IF
login{login password] / access denied
Test Objective e
afce Bridte erson M Bgn) bogin{ogipassword) access_authorized

Description . =

The tester tries to find the correct password in order to - QV/

connect as a Bob user, ¥

Our objective is to check the behavior of the system when an
attacker (misuser)

tries to find the password by guessing. The teSt generatlon Of
The IF model contains several possible couples (login,

password) that wi|1|: be tested upntilthe end tg‘the digctionnary abStraCt teSt cases based
on an algorithm called

“Hit or Jump”

m

Formal specification

0BI(1) = OBJ(ord) = {objl, obj2, obj3, obj4}
objl,obj3 = condl“cond2”cond3* condd * cond>

condl = process: instance = {server}0
cond2 = state: source: login
cond3 = state: destination: login e
cond4 = action: input login{loginl, pass2) i change{options)
]
E axit acoessibie alections) |
Generate Test case i k= J
i logout/ ok
Test case i choosevole(vole)
Nogin{loginl, passl} laccessAuthorized{} : WtDEaletext
Ylogin{legin,pass1}! - i
Absiract ?optiens{optionpopll, opticnpop2l, optionpop31} lok{} ¥ - change_vole
Sec ety Ichoosejvotesl} E fok
TesEs Nlogin{loginl, pass2} laccessDenied{messagel } E i
?login{loginl, pass3} laccessDenied{messagel } !
Nlogin{loginl, pass2} laccessDenied{messagel } i
Yogin{loginl, passl } laccessAuthorized{} = i —— lagout / ok logout { ok volefchoice! I
... i choice2) | ok
IP Adress Port valdate ok
- — “

Dottty W W W BB e BT AL s W v

Test generation with TestGen-IF
kegin{login, password) / accass deniad
Test Objective onties
pree Brute version Eeigdelalls login login{login.password) / access_authorized
Description J/ "’l
< -
The tester tries to find the correct password in order to - oxit —
connect as a Bob user. il .
t 1,0p2; {ok
Cur objective is to check the behavior of the system when an axit Elections e e
attacker (misuser) = |
tries to find the password by guessing. —
The IF model contains several possible couples (login,
password) that will be tested until the end of the dictionnary [cond=noklchooss (vates)
N
Formal specification popup alert
cond=ok]choose{voles)
OBJ{1) = OBJord) = {objl, obj2, obj3, obj4} - :]
objl,chj3 = condl *cond2* cond3* cond4 * cond5 (2]
condl = process: instance = {serverf)
cond? = state: source: login
cond3 = state: destination: login)
condd = action: input login(loginl, pass2) 1 change(options)
W
bie elections l
Generate Test case —Je| Testing | — [E
scripts
i logout f ok
Test case choosevolelvole) @ Wemgl) threatContext
8 real i
flogin{loginl, passl} laccessAuthorized!} - I/ Sy -
foptions{optionpopll, optionpop2l, optionpop31} ok} il / / h
Tchooselvotesl} /s // f{;nga‘mm
Hlogin{loginl,pass2} laccessDenied{messagel } E /' /l
flogin{loginl,pass3} laccessDenied{messagel } / V4
fleginf{loginl, pass2} laccessDenied{messagel } . ," /
Hogi i ! i v/ logout / ok logout [ok
flogin{loginl,passl} laccessAuthorized{} - \“ { ihreatonlext gou Gou valeichoice1,
Vo choice) / ok
IP Adress Port 9 ¥ L validate f ok | flo
. 19216811 8081 pvesEoT

Monitoring Tool (MMT)

recormns [13 e

Security
Tests e

r
Test Engineer
Test Purposes
 Requrenenss |- =

Evoting application : montima g e

Security
Properties

» Two main uses:

o During the testing phase to complement the testing tools
and provide a verdict

o During the operation phase to monitor security and
application context

» Relies on data collected at different levels
o Network (ex. CAM messages)
o Application internal events (notification module)
o System status (CPU and memory usage)

~ W J - ~ Va et
/ ~“RYE - b S
i ~

Sys MMT
Extract Correlation
Net Events X
| 0 Events) ﬁa » (Verdicts) +/
App Prop1 fail
Sys.mem Prop2.ok
Sys.CPU A Prop3.inc
IP@ Port Pproperties
App.login Functional
Security
Performance

-

A B9 _,“‘ "'\wu <> R = A ‘—_‘* :‘“‘« a ‘—\‘r‘<'—r‘ " ' m T al a
mlalyﬁlb alldl rFalilure vceciLecculioIil

» Evoting test case — Advanced authentication option

o Example of property: Only authenticated voters can cast
their votes

Cast vote = Failure Cast vote = Success

Login

'\ Logout

MMT Analysis Dashboard-
Security Property

& o @ |D localhost:4567/mmt-sec

2|

Security Dashboard
Detected failures for security property 1: Only logged voters can cast their
votes
"\\--_IITf_-ff"\) 15
78 A Total Failure P
50 A0, : =]
5 A\ Verdicts E o1 e o4 .o
_;'I] n %
0 100 % 0.5
Threat Level Total Success &
Verdicts : |

| [
n 15:43:10 15:43:.15 15:43.20

MMT Analysis Dashboard-Attack
Detection

& o @ D localhost:4567/mmt-sec <!

Security Dashboard

Detected attacks for attack scenario 1: Brute force attack

15

Total Failure
Verdicts

" Threat Level Total Success
Verdicts

detected verdicts

[
n 16:08:58.000

Security rule Description

Ra= Permission(Orgl, wvoter, access, L1, infranet_ A wvoter connecting from the infranet system s

context) permitted to access to the first type of election{named
L1)

Ri=Permission(Crgl, voter, access, L2, infranet_ context) A wvoter connecting from the infranet system s
permitted fo access fo the second ftype of
election{named L2)

Ra=FPermission(Crgl, voter, access, L3, infranet_ context) A wvoter connecting from the infranet system s
permitted fo access fo the second ftype of
election{named L3)

Rs=Permission(Crgl, wvofer, access, L5 desktop_ | A wvoter connecting from a specific deskfop is

context) permitted fo access fo the second ftype of
election{named L4)

Re=Permission(Crgl, wvofer, access, |4, desktop_ | A wvoter connecting from a specific desktop is permitted

context) fo access to athe second type of election(named L5)

R7=Cbligation(Crgl, server, authorize, Election_Lists, The serveris authorized to check the elections lists when

violation_context) a viclation is detected

Re=Cbligation(Crgl, voter, authenticate, L1, The voter should be authenticated to access to the

normal_context) first type of election (L1) when the normal context is
actfivated {anonymous context is not activated).

Re=Cbligation (Orgl, wvoter, encrypt, L1_vote, The vote device should encrypt the data related to any

violation_context) election with the type L1 when a violation is detected.

Rio=0Obligation{Crgl, voter, authenticate, L3, The voter should be authenticated fo access to the

violation_context) third type of election (L3) when a violation is detected.

Ri1=0Obligation(Orgl, wvoter, Advanced_Authenticate, The wvoter should be authentficated based on

_ L4, normal_ context, viclation_context) _ advanced methods fo access to the third type of _

Model based test generation for security purposes
(TestGen-IF)

Correlation of data from different sources
(Network, application, system)

Detection of attacks and failures at runtime
reaction

Brings dynamicity to system by adapting to
different contexts

Monitoring of routing protocols for ad hoc (OLSR protocol)
and mesh networks networks based on a dsitributed
approach (Batman protocol) (Telecom Sud Paris)

Monitoring for secure interoperability — Application to a
multi-source information system (Telecom Sud Paris)

Monitoring with time constraints (C. Andrés, M. Nuhez and
Mercedes Merayo)

Monitoring with AsynchronousCommunications (M.
Nunez and R. Hierons)

Other works by (T. Jeron and H. Marchand, A. Ulrich and
A. Petrenko)

It is now easier to support active testing and
monitoring and integrate it with other development
activities

Modeling technology has matured (using FSMs,
EFSMs, different UML profiles (SysML), temporal
logics)

Much research and innovation is still required and it
should involve collaborations between research and
industry

Pramila Mouttappa, Stephane Maag and Ana Cavalli, "IOSTS based Passive Testing approach for the Validation of
data-centric Protocols",12th International Conference on Quality Software (QSIC 2012), X’ian, China, 27th-29th
August 2012.

Nahid Shahmehri, Amel Mammar, Edgardo Montes de Oca, David Byers, Ana Cavalli, Shanai Ardi and Willy Jimenez,
"An Advanced Approach for Modeling and Detecting Software Vulnerabilities", Journal Information and Software
Technology, vol 54, issue 9, September 2012.

Anderson Morais and Ana Cavalli, "A Distributed Intrusion Detection Scheme for Wireless Ad Hoc Networks", 27th
Annual ACM Symposium on Applied Computing (SAC'12), March 25-29, 2012, Riva del Garda (Trento), Italy

Faycal Bessayah, Ana Cavalli, A Formal Passive Testing Approach For Checking Real Time Constraints, 7th
International Conference on the Quality of Information and Communications Technology, September 29th 2010,
Porto, Portugal.

César Andrés, Stephane Maag, Ana Cavalli, Mercedes G. Merayo, Manuel Nunez, "Analysis of the OLSR Protocol by
using formal passive testing", APSEC 2009, December 2009, Penang, Malaysia.

Felipe Lalanne, Stephane Maag, Edgardo Montes de Oca, Ana Cavalli, Wissam Mallouli and Arnaud Gonguet , An
Automated Passive Testing Approach for the IMS PoC Service, 24th ACM/IEEE International Conference on
Automated Software Engineering, November 2009, Auckland, New Zealand.

Ana Rosa Cavalli, Azzedine Benameur, Wissam Mallouli, Keqin Li, A Passive Testing Approach for Security Checking
and its Practical Usage for Web Services Monitoring, invited paper, NOTERE 2009, 29-June 3-July, 2009, Montréal,
Canada.

Ana Cavalli, Stephane Maag and Edgardo Montes de Oca, A Passive Conformance Testing Approach for a Manet
Routing Protocol, The 24th Annual ACM Symposium on Applied Computing SAC'09, March 9-12 2009, Hawaii, USA.

9. Ana R. Cavalli, Edgardo Montes De Oca, Wissam Mallouli, Mounir Lallali, Two Complementary
Tools for the Formal Testing of Distributed Systems with Time Constraints, The 12-th IEEE/ACM
International Symposium on Distributed Simulation and Real Time Applications (DS-RT 2008),
October 27-29, Vancouver, Canada.

10. Wissam Mallouli, Faycal Bessayah, Ana R. Cavalli, Azzedine Benameur, Security Rules
Specification and Analysis Based on Passive Testing, The IEEE Global Communications Conference
(GLOBECOM 2008), November 30 - December 04, New Orleans, USA.

11. J.-M. Orset, B. Alcalde and A. Cavalli, An EFSM-Based Intrusion Detection System for Ad Hoc
Networks, ATVA 05, Taipei, Taiwan, October 2005.

12. E. Bayse, A. Cavalli, M. Nafnez, and F. Zaidi. A passive testing approach based on invariants:
application to the wap. In Computer Networks, volume 48, pages 247-266. Elsevier Science, 2005.
13. César Andrés, 99-113, Maria Emilia Cambronero, Manuel Nunez Maria-Emilia

Cambronero, Manuel Nufiez: Formal Passive Testing of Service-Oriented Systems. IEEE SCC
2010IEEE SCC 2010: 610-613.

14. César Andrés, Mercedes G. Merayo, Manuel Nunez: Multi-objective Genetic Algorithms:
Construction and Recombination of Passive Testing Properties. SEKE 2010: 405-410.

15. César Andrés, Mercedes G. Merayo, Manuel Nufiez: Formal passive testing of timed systems:
theory and tools. Softw. Test., Verif. Reliab. 22 (6): 365-405 (2012)

16. Robert M. Hierons, Mercedes G. Merayo, Manuel Nunez: Passive Testing with Asynchronous
Communications. FMOODS/FORTE 2013:

