
Testing Philosophy 
Personal perspective 

Yuri Gurevich, Microsoft Research 

Apr. 18, 2015. Redmond to London 



THE JOURNEY 
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Russia, the math period 

First there was math, the one area 
where you can actually prove 
something to somebody. 

Some applications came along as I had 
to support myself. 

Discovering logic, solving old logic 
problems, applying logic to math. and 
collaborating with industry 
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Israel, the modern-logic period 

Failure in forging industrial collaboration 

Wanted to turn to CS but discovered the 
wonderful logic group in Jerusalem. 

Studying and working on (modern) logic, 
model theory and set theory  
 Also having a brush with other subjects, e.g. 

game theory, operation research 

Eventually I decided to restart my CS 
journey. 
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Michigan, the CS period 

Working in Vol. A and Vol. B computer science. 
But it is the second that is more relevant here. 

What is CS about? 
 Algorithms. But what’s an algorithm? 

Teaching Pascal.  

Declarative vs. executable 

What’s an algorithm? 
Can one marry abstraction with executability? 
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What’s a state of an algorithm? 

Informally: the info that, together with the 
program, determines the execution from 
now on. 

Formally: structures in the sense of 
mathematical logic. 
 Re VDL, graphs would not do. 

This paves a way to defining the 
abstraction level of the algorithm and to 
abstract state machines. 
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ASM thesis 

For every algorithm there is a 
behaviorally equivalent ASM. 

 

Eventually proven for large strata of 
algorithms 

The thesis calls for applications. 
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Academia vs. industry 

Math and natural sciences are done 
primarily in academia. But CS is neither. 

The CS/SE split is historical, not 
intrinsic. CSE is one discipline. 

My attempts to connect with industry. 

 Ironically it was my Vol. A research that 
brought me to Microsoft. 
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The group on Foundations of 
Software Engineering 

Hiring (of me and then) of FSE folks 

The one focus (which is unusual in 
MSR): ASM tools. 

ASML, the ASM language 
 Purpose: to specify software on any 

abstraction level 

 The Haskell story 

 Intrinsically parallel and randomized 
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Original problem: poor specs 

A poorly specified design is hard  
to debug and to code  

The resulting code is hard to test for 
functionality 

Poorly specified components are hard to 
assemble 

The stuff is just hard to understand 



Enter testing 

Customer problems tend to become 
your problems. 

What’s testing? 

 It’s hopeless. Undecidable, and NP-hard 
even if you deal with Booleans. 

 A little engineering goes a long way. 
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V-model (from Wikipedia) 
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A lower part 
(from Wikipedia) 
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Requirement 
analysis 
 
System 
design 
 
Architecture 
design 
 
Module 
design 

Aceptance 
testing 
 
System 
testing 
 
Integration 
testing 
 
Unit 
testing 

Source code 



 
“Love triangle” 

1. Architects and devs 

2. FSE 

3. Testers 

14 



Spec Explorer 

The hard problem of tech transfer 

EU to rescue 

Model based testing 
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Slowing down on testing 

Enough management, writing up stuff 

Other engagements 

Eventually quanta 
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DIVERSITY OF TESTING 
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A partial taxonomy 

Black box, white (or glass) box, grey box 

Unit (or module), feature; integration; system 

Alpha (in house), beta (by end users) 

Poking around, manual, automated script, model based 

Acceptance, usability 

Functional; compatibility; regression; performance: load, stress 

Comparison; install, uninstall; recovery 

Combinatorial 

Incremental  

Sanity, smoke 

Random 

Security, privacy, compliance 

Conformance (of implementation to the spec or the other way 
round) 
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Exhaustive testing 

Exhaustive testing in the black-box 
case. 

What is exhaustive testing in the white-
box case? 

 Program coverage?  

 Anything else? 
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Orthogonal ways of testing 

on the example of  
ASM to FSM 
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Math is useful 

Pairwise testing 

A particular testing game 
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TESTING AS A GAME 
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The players 

A two-player game. 

1. Programming team  

2. Testing team 

Could one entity have two hats and 
play both roles? 
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The goals 

Programmer’s goal is to make his program 
work as desired. 

 To do what it is supposed to do. 

 Not to do what it is not supposed to do. 

Tester’s goal is to find bugs, not to prove 
program correct. 

 Successful tests discover errors.  
Cf. positive diagnostic in medicine. 

It is much preferable that the two players are 
distinct. 
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But what if there are no bug? 

Maybe all the bugs have been found. 
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Some other questions 

How is the winner determined?  

 Not all games are antagonistic.  

What is a move?  

When is the game over? 
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TESTS AND PROOFS 
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Testing is inferior to verification 

Dijkstra:  

   “Program testing can be used to show 
the presence of bugs, but never to show 
their absence!” 

That sits well with mathematically 
inclined folks. 

 The Montreal story 
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Don’t underestimate testing 

Donald Knuth: 

 "Beware of bugs in the above code; 
 I have only proved it correct,  
 not tried it." 
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Testing is superior to verification 

This is true in a kind of trivial way: 
verification is just a kind of testing. 

In fact, in industry the term 
“verification” is rarely used in the sense 
of a mathematical proof of correctness. 

Same elsewhere: “Trust but verify.” 
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MYERS’S PARADOX 
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Glenford Myers in 
The art of software testing 

“The number of uncovered bugs in a 
program section is proportional to the 
number of discovered bugs in the 
section.” 
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Is the paradox true or false? 

Here is a counterexample with two one-
line sections: 

 sum(1,1) := 3 2 
sum(1,2) := 2 

So the paradox is not literally true.  
Is it false? 
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One analogy 

“A bird in the hand is worth two in the bush.” 

Is that literally true? The value of any bird in any 
hand is worth (= or  ?) the combined value of any 
two birds in any bush. Ridiculous! But is the saying 
false? 

Maybe the true/false scale is inappropriate.  
One other scale is from “hogwash” to “brilliant.”  
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One stronger meaning of the paradox 

Sriram Biyani and P. Santhanam 
"Exploring Defect Data  
from Development and Customer Usage  
on Software Modules over Multiple Releases“ 
ISSRE 1998, International Symposium 
on Software Reliability Engineering 

“We have shown that modules with more defects in 
development are likely to have more defects in the 
field.” 
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Deriving Myers’s paradox 

The paradox, in its literal form, can 
actually be derived from assumptions 
that are strong but not completely 
ridiculous. We give two illustrations. 
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Example 1: Equally effective testing 

 Assume that the two program sections have 
been tested with the same efficiency; the 
fraction of bugs caught by the testing is the 
same, say 1/k, for both sections.  Then, if b 
bugs are found in a section, there are kb bugs 
there altogether, of which 

  kb - b = b(k-1) 

 bugs remain undiscovered. 
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Example 2: Uniform distribution of bugs  

Modules A, B have 10,000 lines of code each. A has 
1000 bugs; B has 500. In both cases the bugs are 
uniformly distributed. 

A perfect inspection of 1000 lines of code reveals 
about 100 bugs in A and about 50 bugs in B. Twice 
as many bugs have been found in A. 

A has twice as many remaining bugs: 900 vs. 450. 
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PHILOSOPHY UNDER TEST 
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Back to tests and proofs 

One can, in principle, verify a math 
proof. What about a physical theory? 
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Inductive reasoning 

Math employs only deductive reasoning. 
Natural sciences employ inductive reasoning 
as well. 

Examples 

 We observed sun rising on the East so many 
times. Hence it always rises on the East. 

 The water boils at 100 C.  
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Hume’s problem of induction 
in natural sciences 

We can observe only a finite number among 
the infinitely many instances. How can you 
justify the jump to conclusion?  

Is it even useful to bother to observe more 
instances? 

There have been numerous attempts to 
justify induction e.g. probabilistically. 
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Popper’s solution 

The problem of induction justification is so hard 
because such justification is impossible. 

Any scientific theory is just that, a theory.  

 Example: from Newton to Einstein 

On the other hand, scientific theories can be falsified. 
There is no symmetry between verification and 
falsification. 

Additional observations may have no additional 
weight. 

 The water boiling example. 

You have to challenge the theory 
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Falsification principle 

Falsification is the demarcation line 
between science 

 like physics, chemistry, etc. 

 and pseudo-science 

 like astrology, Marxism, etc. 

The principle caught the imagination of 
scientists. 
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Falsification of falsification: 
self-application 

Self-application. Is the falsification principle 
scientific? 

45 



Falsification of falsification: formal logic 

Existential claims x (x) can in principle be verified 

provided that phi is observable.  

Universal claims x (x) can in principle be falsified 

provided that  is observable.  

What is the claim is of the form x  y (x,y) or of 
the more complicated form? 

Typically scientific claims are universal  
e.g. in Newtonian mechaniics, any two objects attract 
each other …  
Maybe this explains Popper’s popularity with the 
scientists.  
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Pragmatics 

What is the form of a scientific claim? 

There are many explanations of a failed 
experiment. 

 The predicted discovery of Pluto was a triumph of 
Newtonian mechanics. What would happen is 
Pluto was not found. 

Theories are remarkably resistant to 
falsification especially if there is no good 
alternative theory. 
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Falsification principle and 
software 

Is falsifiability a demarcation line 
between bad and good software?  

Can you falsify software? 

 If yes, how many bugs does it take to do 
the trick? 

Buggy software is fine until we have a 
better one. Like with theories.   
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