
Testing Philosophy
Personal perspective

Yuri Gurevich, Microsoft Research

Apr. 18, 2015. Redmond to London

THE JOURNEY

2

Russia, the math period

First there was math, the one area
where you can actually prove
something to somebody.

Some applications came along as I had
to support myself.

Discovering logic, solving old logic
problems, applying logic to math. and
collaborating with industry

3

Israel, the modern-logic period

Failure in forging industrial collaboration

Wanted to turn to CS but discovered the
wonderful logic group in Jerusalem.

Studying and working on (modern) logic,
model theory and set theory
 Also having a brush with other subjects, e.g.

game theory, operation research

Eventually I decided to restart my CS
journey.

4

Michigan, the CS period

Working in Vol. A and Vol. B computer science.
But it is the second that is more relevant here.

What is CS about?
 Algorithms. But what’s an algorithm?

Teaching Pascal.

Declarative vs. executable

What’s an algorithm?
Can one marry abstraction with executability?

5

What’s a state of an algorithm?

Informally: the info that, together with the
program, determines the execution from
now on.

Formally: structures in the sense of
mathematical logic.
 Re VDL, graphs would not do.

This paves a way to defining the
abstraction level of the algorithm and to
abstract state machines.

6

ASM thesis

For every algorithm there is a
behaviorally equivalent ASM.

Eventually proven for large strata of
algorithms

The thesis calls for applications.

7

Academia vs. industry

Math and natural sciences are done
primarily in academia. But CS is neither.

The CS/SE split is historical, not
intrinsic. CSE is one discipline.

My attempts to connect with industry.

 Ironically it was my Vol. A research that
brought me to Microsoft.

8

The group on Foundations of
Software Engineering

Hiring (of me and then) of FSE folks

The one focus (which is unusual in
MSR): ASM tools.

ASML, the ASM language
 Purpose: to specify software on any

abstraction level

 The Haskell story

 Intrinsically parallel and randomized

9

10

Original problem: poor specs

A poorly specified design is hard
to debug and to code

The resulting code is hard to test for
functionality

Poorly specified components are hard to
assemble

The stuff is just hard to understand

Enter testing

Customer problems tend to become
your problems.

What’s testing?

 It’s hopeless. Undecidable, and NP-hard
even if you deal with Booleans.

 A little engineering goes a long way.

11

V-model (from Wikipedia)

12

A lower part
(from Wikipedia)

13

Requirement
analysis

System
design

Architecture
design

Module
design

Aceptance
testing

System
testing

Integration
testing

Unit
testing

Source code

“Love triangle”

1. Architects and devs

2. FSE

3. Testers

14

Spec Explorer

The hard problem of tech transfer

EU to rescue

Model based testing

15

Slowing down on testing

Enough management, writing up stuff

Other engagements

Eventually quanta

16

DIVERSITY OF TESTING

17

A partial taxonomy

Black box, white (or glass) box, grey box

Unit (or module), feature; integration; system

Alpha (in house), beta (by end users)

Poking around, manual, automated script, model based

Acceptance, usability

Functional; compatibility; regression; performance: load, stress

Comparison; install, uninstall; recovery

Combinatorial

Incremental

Sanity, smoke

Random

Security, privacy, compliance

Conformance (of implementation to the spec or the other way
round)

18

Exhaustive testing

Exhaustive testing in the black-box
case.

What is exhaustive testing in the white-
box case?

 Program coverage?

 Anything else?

19

Orthogonal ways of testing

on the example of
ASM to FSM

20

Math is useful

Pairwise testing

A particular testing game

21

TESTING AS A GAME

22

The players

A two-player game.

1. Programming team

2. Testing team

Could one entity have two hats and
play both roles?

23

The goals

Programmer’s goal is to make his program
work as desired.

 To do what it is supposed to do.

 Not to do what it is not supposed to do.

Tester’s goal is to find bugs, not to prove
program correct.

 Successful tests discover errors.
Cf. positive diagnostic in medicine.

It is much preferable that the two players are
distinct.

24

But what if there are no bug?

Maybe all the bugs have been found.

25

Some other questions

How is the winner determined?

 Not all games are antagonistic.

What is a move?

When is the game over?

26

TESTS AND PROOFS

27

Testing is inferior to verification

Dijkstra:

 “Program testing can be used to show
the presence of bugs, but never to show
their absence!”

That sits well with mathematically
inclined folks.

 The Montreal story

28

Don’t underestimate testing

Donald Knuth:

 "Beware of bugs in the above code;
 I have only proved it correct,
 not tried it."

29

Testing is superior to verification

This is true in a kind of trivial way:
verification is just a kind of testing.

In fact, in industry the term
“verification” is rarely used in the sense
of a mathematical proof of correctness.

Same elsewhere: “Trust but verify.”

30

MYERS’S PARADOX

31

Glenford Myers in
The art of software testing

“The number of uncovered bugs in a
program section is proportional to the
number of discovered bugs in the
section.”

32

Is the paradox true or false?

Here is a counterexample with two one-
line sections:

 sum(1,1) := 3 2
sum(1,2) := 2

So the paradox is not literally true.
Is it false?

33

One analogy

“A bird in the hand is worth two in the bush.”

Is that literally true? The value of any bird in any
hand is worth (= or ?) the combined value of any
two birds in any bush. Ridiculous! But is the saying
false?

Maybe the true/false scale is inappropriate.
One other scale is from “hogwash” to “brilliant.”

34

One stronger meaning of the paradox

Sriram Biyani and P. Santhanam
"Exploring Defect Data
from Development and Customer Usage
on Software Modules over Multiple Releases“
ISSRE 1998, International Symposium
on Software Reliability Engineering

“We have shown that modules with more defects in
development are likely to have more defects in the
field.”

35

Deriving Myers’s paradox

The paradox, in its literal form, can
actually be derived from assumptions
that are strong but not completely
ridiculous. We give two illustrations.

36

Example 1: Equally effective testing

 Assume that the two program sections have
been tested with the same efficiency; the
fraction of bugs caught by the testing is the
same, say 1/k, for both sections. Then, if b
bugs are found in a section, there are kb bugs
there altogether, of which

 kb - b = b(k-1)

 bugs remain undiscovered.

37

Example 2: Uniform distribution of bugs

Modules A, B have 10,000 lines of code each. A has
1000 bugs; B has 500. In both cases the bugs are
uniformly distributed.

A perfect inspection of 1000 lines of code reveals
about 100 bugs in A and about 50 bugs in B. Twice
as many bugs have been found in A.

A has twice as many remaining bugs: 900 vs. 450.

38

PHILOSOPHY UNDER TEST

39

Back to tests and proofs

One can, in principle, verify a math
proof. What about a physical theory?

40

Inductive reasoning

Math employs only deductive reasoning.
Natural sciences employ inductive reasoning
as well.

Examples

 We observed sun rising on the East so many
times. Hence it always rises on the East.

 The water boils at 100 C.

41

Hume’s problem of induction
in natural sciences

We can observe only a finite number among
the infinitely many instances. How can you
justify the jump to conclusion?

Is it even useful to bother to observe more
instances?

There have been numerous attempts to
justify induction e.g. probabilistically.

42

Popper’s solution

The problem of induction justification is so hard
because such justification is impossible.

Any scientific theory is just that, a theory.

 Example: from Newton to Einstein

On the other hand, scientific theories can be falsified.
There is no symmetry between verification and
falsification.

Additional observations may have no additional
weight.

 The water boiling example.

You have to challenge the theory

43

Falsification principle

Falsification is the demarcation line
between science

 like physics, chemistry, etc.

 and pseudo-science

 like astrology, Marxism, etc.

The principle caught the imagination of
scientists.

44

Falsification of falsification:
self-application

Self-application. Is the falsification principle
scientific?

45

Falsification of falsification: formal logic

Existential claims x (x) can in principle be verified

provided that phi is observable.

Universal claims x (x) can in principle be falsified

provided that is observable.

What is the claim is of the form x y (x,y) or of
the more complicated form?

Typically scientific claims are universal
e.g. in Newtonian mechaniics, any two objects attract
each other …
Maybe this explains Popper’s popularity with the
scientists.

46

Pragmatics

What is the form of a scientific claim?

There are many explanations of a failed
experiment.

 The predicted discovery of Pluto was a triumph of
Newtonian mechanics. What would happen is
Pluto was not found.

Theories are remarkably resistant to
falsification especially if there is no good
alternative theory.

47

Falsification principle and
software

Is falsifiability a demarcation line
between bad and good software?

Can you falsify software?

 If yes, how many bugs does it take to do
the trick?

Buggy software is fine until we have a
better one. Like with theories.

 48

