

Towards Symbolic Model-Based Mutation Testing:

Combining Reachability and Refinement Checking

Bernhard K. Aichernig, Elisabeth Jöbstl

Institute for Software Technology Graz University of Technology ejoebstl@ist.tugraz.at www.ist.tugraz.at

Model-Based Testing

Model-Based Mutation Testing

Outlook

- Action Systems
- Conformance
- Refinement Checking
- Experimental Results
- Future Work & Conclusions

Action Systems

- Ralph-Johan Back
- Guarded commands
- Reactive systems
- Non-determinism

```
type(int, X) :- X in 0..10.
var([v_1, v_2], int).
state def([v_1, v_2]).
init([0,0]).
as :-
  actions (
    A_1 :: q_1 => v_1 := e_1
    •••• ,
    A_m(X) :: g_m \implies (g \implies (v_1 := X ; v_2 := e_2))
  ),
  dood (
     A_1 [] ... [] A_m
  ).
```


Semantics of Actions

- Predicative Semantics
- UTP (Unifying Theories of Programming)

$$l :: g => B \qquad =_{df} \qquad g \land B \land tr' = tr \widehat{[l]}$$

$$l(\overline{X}) :: g => B \qquad =_{df} \qquad \exists \ \overline{X} : g \land B \land tr' = tr \widehat{[l(\overline{X})]}$$

$$x := e \qquad \qquad =_{df} \qquad x' = e \land y' = y \land \dots \land z' = z$$

$$g => B \qquad \qquad =_{df} \qquad g \land B$$

$$B(\overline{v}, \overline{v}'); B(\overline{v}, \overline{v}') \qquad =_{df} \qquad \exists \ \overline{v_0} : B(\overline{v}, \overline{v_0}) \land B(\overline{v_0}, \overline{v}')$$

$$B[] B \qquad \qquad =_{df} \qquad B \lor B$$

Conformance

• UTP's Refinement:

 $M \subseteq I =_{df} \forall x, x'y, y', \dots \in \alpha : I \Rightarrow M$ for all M, I with alphabet α .

• We want to find counterexamples for refinement, i.e., cases where $M^O \not\sqsubseteq M^M$

$$\exists x, x', y, y', \dots \in \alpha : M^M \land \neg M^O$$

• Unsafe state:

$$u \in \{s \mid \exists s' : M^M(s,s') \land \neg M^O(s,s')\}$$

Example: Non-Refinement

$$\exists x, x', y, y', \dots \in \boldsymbol{\alpha} : M^M \wedge \neg M^O$$

(Non-)Refinement of Action Systems

• Consider reachability:

Is the unsafe state reachable from the initial state?

• Non-refinement:

 $\exists \overline{v}, \overline{v}', tr, tr' : (\overline{v} \in reachable(AS^{O}, tr) \land (A_{1}^{M} \lor \cdots \lor A_{n}^{M}) \land \neg A_{1}^{O} \land \cdots \land \neg A_{m}^{O})$

• By application of distributive law:

$$\bigvee_{i=1}^{n} \exists \overline{v}, \overline{v}', tr, tr' : (\overline{v} \in reachable(AS^{O}, tr) \land A_{i}^{M} \land \neg A_{1}^{O} \land \cdots \land \neg A_{m}^{O})$$

Searching Unsafe States

Reaching an Unsafe State

Empirical Evaluation: Car Alarm System (CAS)

Empirical Evaluation: CAS

```
% definitions: types, variables, state, initial state
as :-
 actions (
   'after'(Wait time)::(true) => (
     ((Wait time \#= 20 \#/\setminus aState \#= 3) =>
          (aState := 2; fromClosedAndLocked OR fromSilentAndOpen := 1))
   []
     ((Wait time \#= 30 \#/\setminus aState \#= 1 \#/\setminus fromArmed \#= 4) =>
          (aState := 0; fromAlarm := 4; fromArmed := 0))
   []
     ((Wait time #= 270 #/\ aState #= 0 #/\ fromAlarm #= 2) =>
          (aState := 7; fromAlarm := 1; fromArmed := 0))
   ),
   'Lock'::(true) => (
     ((aState \#= 6 \#/ fromAlarm \#= 0) => (aState := 5))
   []
     ((aState \#= 4 \#/ fromArmed \#= 1) \Rightarrow (aState := 3; fromArmed := 0))
   ), ...
 ),
 dood ( 'Lock' [] [X:int]: 'after'(X) [] ... ).
```

Elisabeth Jöbstl

Empirical Evaluation: Mutations

- Manual mutations:
 - guard true: 34 mutants
 - comparison operator inversion: 52 mutants
 - increment integer constant: 116 mutants
- \rightarrow 206 mutants
 - + 1 unaltered (original)
 - = 207 mutants
 - 12 mutants (constraint solver problems)

= 195 mutants

CAS version		Refinement checker			
		find mutated action	reach & non-refine	total	
20/30/270	total	16	90	106	
	average	0.08	0.46	0.54	
	min	0.01	0.02	0.03	
	max	0.30	2.80	3.10	
*10	total	15	86	101	
	average	0.08	0.44	0.52	
	min	0.01	0.02	0.03	
	max	0.27	2.80	3.07	
*100	total	16	90	106	
	average	0.08	0.46	0.54	
	min	0.01	0.02	0.03	
	max	0.27	2.77	3.04	
*1000	total	15	85	100	
	average	0.08	0.44	0.52	
	min	0.01	0.02	0.03	
	max	0.27	2.69	2.96	
Elisabeth Jöbstl		Tallinn, March 25 th 2012			MBT 2012

Refinement Checker (symbolic)

Explicit ioco checking (Ulysses)

CAS version		Refinement checker			Ulysses	
		find mutated action	reach & non-refine	total	in/out	out
20/30/270	total	16	90	106	98	65
	average	0.08	0.46	0.54	0.50	0.34
	min	0.01	0.02	0.03	0.05	0.05
	max	0.30	2.80	3.10	6.30	5.33
*10	total	15	86	101	8.8 h	7.9 h
	average	0.08	0.44	0.52	2.7 min	2.4 min
	min	0.01	0.02	0.03	0.45	0.36
	max	0.27	2.80	3.07	2.6 h	2.6 h
*100	total	16	90	106	-	-
	average	0.08	0.46	0.54	-	-
	min	0.01	0.02	0.03	-	-
	max	0.27	2.77	3.04	-	-
*1000	total	15	85	100	-	-
	average	0.08	0.44	0.52	-	-
	min	0.01	0.02	0.03	-	-
	max	0.27	2.69	2.96	-	-
Elisabeth Jöbstl		Tallinn, March 25 th 2012				MBT 2012

Ulysses (explicit)

Future Work

- Other constraint solvers, e.g. MINION
- SMT solvers (ongoing diploma thesis)
- Trace to unsafe state \rightarrow adaptive test case
- More experiments with different systems

Conclusions

Conclusions

Thank you for your attention!