
Rule-based Test Generation with Mind Maps
test engineering in the practice

Dimitry Polivaev
25.03.2012

Rule-based Test Generation with Mind Maps
25.03.12 Page 2

G&D has been growing through continuous innovation

1852 2011

Banknote and
security paper

Government solutions

Banknote processing

Banknote and
security printing G

lo
b
a

l
le

a
d
e

r
in

 s
e

c
u

re
 s

o
lu

ti
o
n

sServer software and services

Cards for payment and
telecommunications

Token and embedded security

Rule-based Test Generation with Mind Maps
25.03.12 Page 3

Test engineering is similar to product development

System Requirements Specification

Test Runner

Test Logs / Test Run Coverage

Product = Test Target

Software Development

Software Modules

Compiler

tools

generated

input
Legend

Test Coverage

Test Generation Engine

Test Scripts

Test Development

Test Modules

Rule-based Test Generation with Mind Maps
25.03.12 Page 4

SUT Example: calculation of phone call costs

1. if country is empty or ’National’ the destination is set to National ,
2. if country is ’Greenland’, ’Blueland’ or ’Neverland’ the destination is set to

’International’,
3. All other country values are invalid.
4. Tariff ”At night” applies if the call begins between 8 pm and 6 am.
5. Tariff ”On the weekend” applies if the call begins on Saturday or on Sunday.
6. Call duration given in seconds is rounded up to units specified in column

”Time unit”.
7. Maximal call duration is limited to 24 hours.

200.80$0.50$1.00$International

10.03$0.07$0.10$National

Time unit
(seconds)

At night,
on the weekend

CheapCall
Tariff

Standard
Tariff

Destination

Rule-based Test Generation with Mind Maps
25.03.12 Page 5

Test case systematic

$TestGoal

'GoodCase' 'Failure'

$Failure

'wrong country code' 'wrong phone number'

$destination

'National' 'International'

(Each blue element is a test case property, green elements represent possible values.)

Each test case is defined by all its properties e.g. test case name, test goal ("good case",
"semantic error XY",) test commands, their input data, expected results.

Systems of test cases can be organized by classification tree like systems of test case
properties.

Rule-based Test Generation with Mind Maps
25.03.12 Page 6

Test generation process

� Test generation is a process of selection of relevant test cases.

� It finds all relevant value combinations of different test properties,
considering dependencies between them.

� It builds a test suite consisting of executable test scripts and test
coverage information.

Rule-based Test Generation with Mind Maps
25.03.12 Page 7

Test generation modules are responsible for test property calculation, test script
generation and test coverage evaluation.

� Different tasks are handled by different modules.

There are modules Strategy, SUT Model, Writer, Solver and Goals.

� Strategy (mandatory) describes WHAT is being tested. It defines an
exploration of test case property space, for example using the Cartesian
product, random combinations or defining functional dependencies
between the property values.

� SUT Model (optional) can calculate behavior related values namely
expected results, statement coverage, path coverage, modified condition
/ decision coverage, internal states at given statements for given input
parameters and data state before call.

Basic test generation modules

Rule-based Test Generation with Mind Maps
25.03.12 Page 8

� Writer (mandatory) creates test script fragments in the target language
e.g. Test header, Test name, Test description, Test script commands,
Comments

� Solver (optional) specifies HOW the SUT is tested. It can be used to
calculate test commands in preconditions, post processing or
verification so that test property values already set by the strategy are
satisfied.

� Goals (optional) describes WHY the tests are needed. It defines
combinations of property values to be covered by a complete test suite.
The module can be used for checking the coverage and for selecting a
sufficient subset of generated test cases.

� Examples: status word coverage, statement coverage, path coverage, state
coverage.

Basic test generation modules

Rule-based Test Generation with Mind Maps
25.03.12 Page 9

Test generator architecture

Rule-based Test Generation with Mind Maps
25.03.12 Page 10

Modular design makes changes easier

Test module implementations can be changed independently:

� Strategies can be exchanged for testing of different aspects. For
instance it is possible to have a small amount of test cases, with a
high coverage of the requirements, available quickly. During the bug
fixing of the found errors the strategies can be extended.

� SUT models can be exchanged for testing of different products /
product variations.

� Different solvers can be applied for different ways or prepare initial
state or reset test target after test.

� Different writers can be used for generating scripts for different script
languages

� Different test goals can be defined for test case selection for test
depth variation, e.g. for smoke tests, regression tests etc.

Rule-based Test Generation with Mind Maps
25.03.12 Page 11

Strategy as a rule set. Iteration rules.

The strategy can be compactly represented by a set of rules specifying
property dependencies.

There are two kinds or rules:

Iteration rules defines iterations over property values.

They are evaluated when some another property is assigned by another
iteration rule (so-called forward chaining).

Each iteration rule contains three parts:

� the WHEN-part describes when the rule is applied,

� the optional IF-part describes an additional condition, and

� the THEN-part describes the action setting the list of property values
and sometimes adding new rules to the set.

Rule-based Test Generation with Mind Maps
25.03.12 Page 12

$TestGoal

'GoodCase'

$destination

'National' 'International'

$call Duration

1 60

Examples of iteration rules

1. WHEN test generation is started
IF (empty)
THEN property TestGoal is sequentially
assigned values 'GoodCase', 'BadCase'

2. WHEN property TestGoal is assigned
IF it has value 'GoodCase'
THEN property destination is sequentially
assigned values 'National' and 'International'

3. WHEN property TestGoal is assigned
IF it has value 'GoodCase'
THEN property call- Duration is sequentially assigned values 1 and 60

Rule-based Test Generation with Mind Maps
25.03.12 Page 13

Default rules assign one value to a property not assigned by the iteration
rules. They are evaluated if its target property value was requested by
another rule or by the test generation algorithm (so-called backward
chaining).

They can contain only an optional IF - part with a condition and a THEN - part
describing an action. Default rules are not designed for producing
iterations, they always assign single values.

Example:

1. IF destination = 'International'
THEN property country is assigned a value 'Yellowland'

Default rules. Rules with extra conditions

Rule-based Test Generation with Mind Maps
25.03.12 Page 14

Rule Stacks

Iteration rules with the same properties in the WHEN part and the same target
property build a so-called rule stack. They are processed in the opposite order to
their definition. There are also rule stacks with default rules.

If some rule with empty condition or with satisfied condition was found, no
other rules from the stack are executed.

Rule sets must be self-consistent: if a property has already been assigned, no
other iteration rule may try to reassign it.

Rules added to the stack later can override previously defined rules. This can be
used to define strategy variations overloading some default strategy. For
example there can be some common and product dependent subsets for testing
of a product line.

Rule-based Test Generation with Mind Maps
25.03.12 Page 15

Rules can be defined in mind maps

Hereby the rule parts are represented by contents
and relative positions of the mind map nodes.

Rule-based Test Generation with Mind Maps
25.03.12 Page 16

Mind Map representation of Rule based Test Strategy

The map based rule set looks similar to a classification tree. It is
substantially more powerful because it supports concepts of rule stacks,
functional conditions and simultaneous iterations over different
property values.

Mind maps as a representation of generation rules are created with
open source tool Freeplane. It offers good visualization, automatic
context dependent node formatting, search and filtering of the rule
sets.

Use of mind maps for test strategy implementation simplifies
development, reviewing and improvement of the strategy.

Rule-based Test Generation with Mind Maps
25.03.12 Page 17

Example strategy as a mind map

The strategy produces following property combinations:
1. $TestGoal:'GoodCase'/$destination:National/$callDuration:1

2. $TestGoal:'GoodCase'/$destination:International/$country:Greenland/$callDuration:60

3. $TestGoal:'GoodCase'/$destination:International/$country:Blueland/$callDuration:1

4. $TestGoal:'GoodCase'/$destination:International/$country:Neverland/$callDuration:60

5. $TestGoal:'BadCase'

It demonstrates simultaneous iteration of different property values

Properties requires for test output but not set by iteration rules can be set using default
rules also defined in a mind map.

Rule-based Test Generation with Mind Maps
25.03.12 Page 18

Test Goals

Test selection and test coverage can be expressed as a set of test goals. There
are finite and infinite goals:

� A finite test goal is a check list with limited number of values.

� In the infinite goal the number of possible values is unlimited or not
known before the test generation.

Based on the goals the generator can decide which test cases should be kept
and generate test suite coverage statistics.

Rule-based Test Generation with Mind Maps
25.03.12 Page 19

Finite test goal

A finite test goal is exactly like a check list. Such check lists can include

� all or selected statements within the model code (code coverage),

� all values of input parameters,

� output values or model interim data,

� any combinations between the above data like execution paths in the
model,

� other model coverage information like modified condition/decision
coverage.

So a finite goal can be defined as a pair of the complete check list given as
e.g. set of strings and a function from the any data available to the strategy
to the values to be compared to the check list values.

Rule-based Test Generation with Mind Maps
25.03.12 Page 20

Infinite test goal

The infinite goals consists only of the single function of test properties, there
is no predefined check list.

The test is significant for an infinite goal if the function returns a result not
returned before, and the check lists is automatically extended when a new
value is calculated

Rule-based Test Generation with Mind Maps
25.03.12 Page 21

Test Case Selection using Test Goals

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25

Every "step" is a new test strategy
running N times with random
values.
The TC generation continues as
long as the same strategy finds
new test cases.

Test cases significant increasing the test coverage should be separated
from the rest test cases which can be removed.

Number of generated TCs in Thousands

Number of selected TCs

Rule-based Test Generation with Mind Maps
25.03.12 Page 22

Test Coverage

Given the test goals the framework collects test coverage statistics
during the test generation.

They describe how often any particular value from the check lists was met
by all of the saved test cases.

GOAL: 'Flowchart coverage' (achieved)

* Invalid Number (455/1)|=========================

* National Code (204/1)|============

* International1 Code (147/1)|=========

* OnTheWeekend (50/1)|===

* At night (34/1)|==

* National (83/1)|=====

* National+Standard (20/1)|==

* National+Weekend (9/1)|=

* International1+Standard (34/1)|==

* International1+Weekend (23/1)|==

* International2+Standard (29/1)|==

* International2+Weekend (12/1)|=

Rule-based Test Generation with Mind Maps
25.03.12 Page 23

Project Experiences

Project experiences demonstrated advantages of Rule-based Test Generation:

� Increase of test maintainability, reduced test adaptation efforts on
specification updates.

� Better test systematic through

� Classification of test cases (requirements, test ideas)

� Combination and selection determined by formal description of test strategy

� Combination with random based combinations increases test coverage and
finds unexpected bugs

� Systematic use of with random elements in the test strategy increases test
coverage and finds unexpected bugs.

Rule-based Test Generation with Mind Maps
25.03.12 Page 24

Summary

Systems of test cases can be organized by test case properties.

Modular designed test generators can be used to generate them. Basic test
generation modules are Strategy, Model, Solver, Writer and Goals.

Language matters. There is a test generation language specialized on
implementing the modules.

Writing of test strategies as mind maps based rule sets helps to achieve an
additional productivity increase.

Replacement of “test handicraft” by test engineering allows to achieve better
Test Coverage and Test Depth and decrease test development and
maintenance costs.

