Constraint-Based Heuristic On-line Test Generation from Non-deterministic I/O-EFSM

Danel Ahman, Marko Kääramees

Tallinn University of Technology Eliko Competence Centre

European Union Regional Development Fund Investing in your future

MBT 2012

Conformance testing

- A system should communicate to its environment according to a specification/protocol
- Black-box view: test@interface
- Embedded systems, services, communication devices

Testing non-deterministic systems

Non-deterministic system may react differently to the same input

- Non-deterministic systems
- Non-deterministic models due to abstraction

On-line testing is needed

- Test cases cannot be prepared beforehand
- Tester must decide inputs during the test based on observed outputs and active goals
- Extensive test planning is costly and not feasible on-line
 - Industrial requirements: 10-100 ms for each step

Practical non-determinism

 output-observability – next state can be determined based on the given input and observed output MBT 2012

Talk Outline

- Introduction and background
- Preliminaries
 - Conformance and test coverage
 - Modelling of the system and test goals
 - RPT- Reactive Planning Tester
- Case studies
- Conclusions

Conformance

IOCO, alternating simulation:

- Every input of the model is acceptable by the IUT
- The resulting output is possible in the model

Hence:

- Only some aspects may be modelled
 - Some inputs (functionality) is not modelled
- IUT may be more deterministic
 - Spec/standard allows some freedom of implementation

Test coverage

When to stop testing?

Conformance

all inputs in all states resulting all possible outputs are covered

- Infeasible/impossible to check all combinations for a general model
- Coverage
 - defined structural elements of the model are covered

while done?

generate *input* possible in model $output \leftarrow IUT(input)$

if *output* not possible in model

return(test failed)

endwhile

return(test succeeded)

MBT 2012

Modelling of IUT and test goals

- IUT is modelled by an Input/Ooutput Extended Finate State Machines (I/O-EFSM)
 - State space consists of locations and state variables
 - An edge (transition) has
 - input and output with its data parameters
 - guard
 - update function of the state variables

Background theory

- Inear arithmetics
- other theories possible
- Test goals modelled by traps

A trap is a **(predicate)** associated to an edge

The power of traps

- A trap is a (predicate) associated to an edge
- Several goals can be expressed by traps
 - transition coverage: every edge has a trap true
 - transition sequence trap with reference to other traps
 - Advanced goals using auxiliary variables consequent transitions, repeated pass, ...
- Properties not expressible by traps
 - Liveness properties but it is not possible to test for liveness anyway
 - Assertions/invariants it never happens/always holds The model specifies only allowed behaviours
 - No LTL, CTL, but still quite powerful Many significant subsets can be modelled by aux variables

MBT 2012

RPT – Reactive Planning Tester

- Offline symbolic test strategy generation
 - Based on backwards symbolic reachability analysis
 - Relates input and reachability of a trap
 - Predicates Strategy_{l→trap}(I,S)
 - I location
 - I input with its parameters
 - S state (valuation of the state variables
- Online test data generation
 - next trap to be covered is selected
 - the strategy predicates are used to find an input by model generation using SMT solver
 - input is sent to the SUT and output observed

Testing process

- Data generation based on the test strategy
 - should be done on-line for non-deterministic model
 - constraint solving / satisfying model generation used
- Several goals at the same time
 - Minimize the length of the overall testing process
 - Reset to the initial state may be expensive
 - Eg reboot of the SUT
 - The purpose is to cover as many test goals (traps) in one run as possible

Simple loop example

Simple artificial example where the right sequence of inputs should be given to reach the goal

Bounded analysis

Bounded analysis of the simple loop example

Constraints generated with bound (traversal depth) 2

$\chi RPT\text{-}$ Heuristic Reactive Planning Tester

- Complementary to bounded strategy generation
 - Guides the testing process until a state is reached where a RPT strategy is applicable
- Uses an objective function to find an action that guides IUT towards some test goal
- Aims several goals (traps) at the same time to minimize the overall test time
- Based on the ideas of
 - forward, explicit state analysis
 - Iocal search
 - tabu search

On-line test generation

while exist uncovered traps

if RPT strategy exists in the current state for any uncovered trap RPT on-line testing

else

```
candidates ← Generate_Action_Candidates
```

 $action \leftarrow Choose_Most_Promising_Action(candidates, tabu_list)$

 $output \leftarrow Interact_with_IUT(action)$

if the output of does not conform to the model

stop(test_failed)

simulate *input/output* on model and determine the *next_state*

add *next_state* to the *tabu_list*

end while

stop(test_passed)

Search neighbourhood (candidates)

Partitioning of the traps

- uncovered
- covered
- unreachable
- Tabu lists
 - avoid the state that is explored already
- Closest locations with strategy constraints
 - a set of closest locations with strategy constraints for every pair of location and trap found off-line
 - these locations are the goals of heuristic guidance

Selecting tester action

- possible actions are simulated on the model and the result is evaluated using an objective function
- objective consists of
 - graph based distance between the simulated location and the location with a RPT strategy
 - violation degree of the RPT strategy constraint in the simulated state

 $f = dist^2 + viol^2$

- Selection of the candidate actions narrowed in 3 phases
 - most promising actions optimized for the best input parameters and the best selected for the next step

Violation degree

- Measures how much the current state (valuation) violates some constraint
 - 0 if the constraint is satisfiable in the current state
 - >0 if not satisfiable

A, B – logical formulae, a, b – arithmetic expression			
$v(a \ge b) = abs(min(0, v(a) - v(b)))$	v(a = b) = abs(v(s)-v(b))		
v(a > b) = abs(min(0, -1 + v(a) - v(b)))	$v(a \neq b) = abs(v(s)-v(b))$		
v(a < b) = abs(max(0, 1 + v(a) - v(b)))	$v(A \lor B) = \min(v(A), v(B))$		
$v(a \le b) = abs(max(0, v(a) - v(b)))$	$\nu(A \land B) = \nu(A) + \nu(B)$		

Telecom Billing Case-Study

MBT 2012

Telecom Billing Case-Study

- Model: 13 locations, 47 transitions
- 7 variables of range [0 .. 32000]
- Path length to trap from initial state: 189
- Size of ASCII representation of the strategy: 34MB
- Time for test generation (symbolic analysis + input) [1 GHz Opteron]

Strategy generation path length (time (s))	189 (4644)			
Bounded strategy depth (time (s))	100 (2120)	50 (1086)	10 (95)	2 (16)
Heuristic test data path length (time (s))	230 (6,7)	255 (17,4)	275 (17,0)	1051 (153,4)
Avg test data gen (ms)	51	84	63	146

Complexity issues

- Constraints limited to decidable theories
 - Inear arithmetic (+ others supported by solvers)
- Theoretical limits
 - SAT problem is NP-complete
 - decision procedure of Presburger arithmetic is doubleexponential
- Practical aspects
 - number of constraints is in O(traps*transitions)
 - Z3 does a good job in satisfiability checking and simplification in strategy generation
 - Comet used for constraint solving and violation degree calculation in χRPT
- Balancing complexity of the strategy and on-line data generation
 - feasibility can be achieved by tuning the balance

Main results

- Model-based conformance testing framework for non-deterministic I/O-EFSM models
- Computationally expensive strategy generation and neighbourhood analysis done off-line
- Efficient on-line test planning
 - selection of input for each step in 10-100 ms range
 - usable in the industrial setting