Constraint-Based Heuristic On-line Test Generation from Non-deterministic I/O-EFSM

Danel Ahman, Marko Kääramees

Tallinn University of Technology
Eliko Competence Centre
Conformance testing

- A system should communicate to its environment according to a specification/protocol
- Black-box view: test@interface
- Embedded systems, services, communication devices
Testing non-deterministic systems

Non-deterministic system may react differently to the same input

- Non-deterministic systems
- Non-deterministic models due to abstraction

On-line testing is needed

- Test cases cannot be prepared beforehand
- Tester must decide inputs during the test based on observed outputs and active goals
- Extensive test planning is costly and not feasible on-line
 - Industrial requirements: 10-100 ms for each step

Practical non-determinism

- output-observability – next state can be determined based on the given input and observed output
Talk Outline

- Introduction and background
- Preliminaries
 - Conformance and test coverage
 - Modelling of the system and test goals
 - RPT- Reactive Planning Tester
- χRPT – Heuristic RPT
- Case studies
- Conclusions

Model

Spec
The vending machine
- latte for 20 kroner
- when more money given

Test Goals
Test latte for >20 kroner
Test all transitions

Symbolic, structural analysis

Strategy

Tester

Adapter

Spec

Model

Strategy

Tester
Conformance

IUT

\[i_1 | i_2 | i_3 \rightarrow o_1 | o_2 \]

Model

\[i_1 | i_2 \rightarrow o_1 | o_2 | o_3 \]

IOCO, alternating simulation:

- Every input of the model is acceptable by the IUT
- The resulting output is possible in the model

Hence:

- Only some aspects may be modelled
 - Some inputs (functionality) is not modelled
- IUT may be more deterministic
 - Spec/standard allows some freedom of implementation
Test coverage

When to stop testing?

- **Conformance**
 - all inputs in all states resulting all possible outputs are covered
 - Infeasible/impossible to check all combinations for a general model
- **Coverage**
 - defined structural elements of the model are covered

```python
while done?
    generate input possible in model
    output ← IUT(input)
    if output not possible in model
        return(test failed)
endwhile
return(test succeeded)
```
Modelling of IUT and test goals

- IUT is modelled by an **Input/Ooutput Extended Finite State Machines (I/O-EFSM)**
 - State space consists of locations and state variables
 - An edge (transition) has
 - input and output with its data parameters
 - guard
 - update function of the state variables

- **Background theory**
 - linear arithmetics
 - other theories possible

- Test goals modelled by **traps**
 A trap is a \(\langle\text{predicate}\rangle\) associated to an edge
The power of traps

- A trap is a \textit{predicate} associated to an edge
- Several goals can be expressed by traps
 - transition coverage: every edge has a trap \textit{true}
 - transition sequence trap with reference to other traps
 - Advanced goals using auxiliary variables consequent transitions, repeated pass, ...
- Properties not expressible by traps
 - Liveness properties but it is not possible to test for liveness anyway
 - Assertions/invariants – it never happens/always holds The model specifies only allowed behaviours
 - No LTL, CTL, but still quite powerful Many significant subsets can be modelled by aux variables
RPT – Reactive Planning Tester

- Offline symbolic test strategy generation
 - Based on backwards symbolic reachability analysis
 - Relates input and reachability of a trap
 - Predicates $\text{Strategy}_{l \rightarrow \text{trap}}(I,S)$
 - l – location
 - I – input with its parameters
 - S – state (valuation of the state variables)

- Online test data generation
 - next trap to be covered is selected
 - the strategy predicates are used to find an input
 by model generation using SMT solver
 - input is sent to the SUT and output observed
Testing process

- Data generation based on the test strategy
 - should be done on-line for non-deterministic model
 - constraint solving / satisfying model generation used
- Several goals at the same time
 - Minimize the length of the overall testing process
 - Reset to the initial state may be expensive
 - Eg reboot of the SUT
 - The purpose is to cover as many test goals (traps) in one run as possible
Simple loop example

- Simple artificial example where the right sequence of inputs should be given to reach the goal

\[x + y + z < 18 \]
\[x + y + z = 18 \land z > 2 \]
\[x + y + z = 18 \land y < 6 \]
\[x + y + z < 18 \]
\[x + y + z \geq 18 \]

MBT 2012
Bounded analysis

depth 8
Bounded analysis of the simple loop example

- Constraints generated with bound (traversal depth) 2

```
x=10 \land y=6 \land z=1

x=11 \land y=5 \land z=2

x=10 \land y=6 \land z=2
```

Diagram showing the states and transitions with constraints associated with each state.
χRPT - Heuristic Reactive Planning Tester

- Complementary to bounded strategy generation
 - Guides the testing process until a state is reached where a RPT strategy is applicable
- Uses an objective function to find an action that guides IUT towards some test goal
- Aims several goals (traps) at the same time to minimize the overall test time
- Based on the ideas of
 - forward, explicit state analysis
 - local search
 - tabu search
On-line test generation

while exist uncovered traps
 if RPT strategy exists in the current state for any uncovered trap
 RPT on-line testing
 else
 candidates ← Generate_Action_Candidates
 action ← Choose_Most_Promising_Action(candidates, tabu_list)
 output ← Interact_with_IUT(action)
 if the output of does not conform to the model
 stop(test_failed)
 simulate input/output on model and determine the next_state
 add next_state to the tabu_list
end while
stop(test_passed)
Search neighbourhood (candidates)

- Partitioning of the traps
 - uncovered
 - covered
 - unreachable

- Tabu lists
 - avoid the state that is explored already

- Closest locations with strategy constraints
 - a set of closest locations with strategy constraints for every pair of location and trap found off-line
 - these locations are the goals of heuristic guidance
Selecting tester action

- possible actions are simulated on the model and the result is evaluated using an objective function
- objective consists of
 - graph based distance between the simulated location and the location with a RPT strategy
 - violation degree of the RPT strategy constraint in the simulated state
 \[f = dist^2 + viol^2 \]
- Selection of the candidate actions narrowed in 3 phases
 - most promising actions optimized for the best input parameters and the best selected for the next step
Violation degree

- Measures how much the current state (valuation) violates some constraint
 - 0 if the constraint is satisfiable in the current state
 - >0 if not satisfiable

<table>
<thead>
<tr>
<th>A, B – logical formulae, a, b – arithmetic expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\nu(a \geq b) = \text{abs}(\min(0, \nu(a) - \nu(b)))$</td>
</tr>
<tr>
<td>$\nu(a > b) = \text{abs}(\min(0, -1 + \nu(a) - \nu(b)))$</td>
</tr>
<tr>
<td>$\nu(a < b) = \text{abs}(\max(0, 1 + \nu(a) - \nu(b)))$</td>
</tr>
<tr>
<td>$\nu(a \leq b) = \text{abs}(\max(0, \nu(a) - \nu(b)))$</td>
</tr>
</tbody>
</table>
Telecom Billing Case-Study
Telecom Billing Case-Study

- Model: 13 locations, 47 transitions
- 7 variables of range [0 .. 32000]
- Path length to trap from initial state: 189
- Size of ASCII representation of the strategy: 34MB
- Time for test generation (symbolic analysis + input) [1 GHz Opteron]

<table>
<thead>
<tr>
<th>Strategy generation path length (time (s))</th>
<th>189 (4644)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bounded strategy depth (time (s))</td>
<td>100 (2120)</td>
</tr>
<tr>
<td>Heuristic test data path length (time (s))</td>
<td>230 (6,7)</td>
</tr>
<tr>
<td>Avg test data gen (ms)</td>
<td>51</td>
</tr>
</tbody>
</table>
Complexity issues

- Constraints limited to decidable theories
 - linear arithmetic (+ others supported by solvers)
- Theoretical limits
 - SAT problem is NP-complete
 - decision procedure of Presburger arithmetic is double-exponential
- Practical aspects
 - number of constraints is in $O($traps\timestransitions$)$
 - Z3 does a good job in satisfiability checking and simplification in strategy generation
 - Comet used for constraint solving and violation degree calculation in χRPT
- Balancing complexity of the strategy and on-line data generation
 - feasibility can be achieved by tuning the balance
Main results

- Model-based conformance testing framework for non-deterministic I/O-EFSM models
- Computationally expensive strategy generation and neighbourhood analysis done off-line
- Efficient on-line test planning
 - selection of input for each step in 10-100 ms range
 - usable in the industrial setting