
Model-Based Testing of Software Product Lines

Dipl.-Inf. Hartmut Lackner, 17. März 2013, Rome, 8th MBT Workshop

Top-Down and Bottom-Up Approach

Contents

• Software Product Lines

– Product Line Design

– Variability in Behavior Models

– Feature Mapping

• Model-Based Testing

– Models for Testing

– Automation of Test Design

• Model-Based Testing for Product Lines

– Top-Down vs Bottom-Up

– Comparison

• Summary

What is a Product Line?

Software Product Lines

• Analogue to product lines from end-user products:
– similar use,
– similar features („look-and-feel“),
– different pricing

• Most important for business domains where there is a
necessity to offer similar but different products

• Explicit modeling of commonalities and differences within
the products of a line

„A software product line (SPL) is a set of software-intensive
systems that share a common, managed set of features
satisfying the specific needs of a particular market segment
or mission and that are developed from a common set of
core assets in a prescribed way.“

CMU SEI

Building Blocks, Platform, Product Family

Quelle: Blackenfelt 2001

 »Product Blocks«

 Product Platform:
Commonalities of a product line

 Product Family:
Products that are based on the
same platform.

Product Line Model vs. Variant Model

Product Line Model
(Domain Engineering)

Variant Model
(Application Engineering)

extract overlap

configure

P1 P1 P2 P2 P3

2,3
2 1,3

PL

Example of a »simple« Product Line Model
Variants of a Vehicle

Car

requires

excludes

Chassis Transmission Engine Cruise Control

Off-Road Sport Automatic Manual Standard ACC

V1 V2

Electric Gasoline Diesel

or alternative
(xor)

mandatory optional

{m..n}

Case Study Example
A Toy Example

An even simpler Example: Online Shop Family

A valid Variant

Behavior Model of the Product Family
150% Model

Feature Mapping

Maps features to model elements

If a feature is selected for a variant
the corresponding elements in the
state machine are present

A Product‘s Behavior
100% Model

Model-Based Testing

Model-Based Testing

Models can be used in several ways

• Models for Test Specification,
i.e., Formalization of Requirements

• Models as the source of Test Generation

• Models as Test Objects
in model-based
development

• Models as Test Oracles,
i.e. for evaluation of tests

MB Test
Specification

MB Test
Generation

MB Test
Execution

MB Test
Evaluation

Tools for Model-Based Testing
• Test specification

Model creation (Editor and Syntax checker)
Linking to Requirements-Management-Tools

• Test generation
Automatic derivation of tests from models
Selection of test data

• Test execution
Connection to the target
Test monitoring and management

• Test evaluation
 coverage checker, report generators,
 verification, model checker

http://www.conformiq.com/home.php�
http://www.t-vec.com/index.php�

Model-Based Testing: Automation of Test
Design

Requirements Tests Test execution Model

Model-Based Testing: Automation of Test
Design

Feature models, domain models Error models, coverage criteria

Model Checking,
Constraint Solving,

Evolutionary Algorithms

Embedded, GUI-Tests

Test models Quality criteria

Test suite

Test generation

Automatic Test Generation with Test Goals

Test generation

A B

C

Test goal „Cover A“

Test goal „Cover B“

Test goal „Cover C“

Criterion
„Cover all states“

Model-Based Testing of Product Lines

General Approaches to MBT for SPL

When applying MBT to SPLs there is one fundamental choice:

When to bind variability?

1. Before test case design

2. After test case design

Binding Variability BEFORE Test Case Design
Product-Centric

Domain
Engineering

Application
Engineering

Requirements
(incl. Variability)

Test Model
(incl. Variability)

Creation/
Completion

Derivation

Test Cases

Binding of
Variability

Test Model

Top-Down
Product-Centric
Variants (100% Models) and Products
are generated according to „Feature
Coverage Criteria“:

• All-Features-Selected/Unselected

• Pair-/N-wise

• …

Test cases are generated for every
variant/product according to test goals:

• Transition Coverage

• MCDC

• …

Binding Variability AFTER Test Case Generation
Domain-Centric

Domain
Engineering

Application
Engineering

Requirements
(incl. Variability)

Test Model
(incl. Variability)

Creation/
Completion

Test Cases
(incl. Variability)

Derivation

Test Cases

Binding of
Variability

Bottom-Up
Domain-Centric

The 150% model is merged with the
feature model.

Test cases are generated from the
merged model. A single test case may be
applicable to more than one product.

Products for testing have to be selected
from the test suite according to a
criterion:

• Minimal number of variants

• All variants

• …

Comparison

Selected Coverage Criteria

• Top-Down

• Feature Model: All-Features-Selected and –Unselected;

• State Machine: Transition Coverage

• Bottom-Up

• State Machine: Transition Coverage

• Variant Coverage: minimum number of Variants

Automatic test design by Conformiq Designer

Top-Down
Manual | Automatic

Bottom-Up
Manual | Automatic

Variants 2 2 1 2

Test Cases 2 18 1 12

Test Steps 43 70 27 59

Evaluation

• Redundancy-wise, the bottom-up approach seems to be more efficient

Variant selection and test generation heavily depend on the applied coverage criteria

• Weaker coverage criteria for variant selection can lead to more efficient results for Top-Down

 Importance of a single variant for the behavior is not easy to determine.

Summary

Summary

• Theoretical considerations for efficiently testing software product lines

– Top-Down approach (Product-Centric)

– Bottom-Up approach (Domain-Centric)

Future Work
• Larger Examples

• Complete the tool chain

• Retrieve a minimal number of variants from the 150% model based test cases

• …

• More experiments on the pros and cons of each approach

• Is it advisable to apply strong coverage criteria on feature models or on 100% models?

• …

	Model-Based Testing of Software Product Lines
	Contents
	What is a Product Line?
	Software Product Lines
	Building Blocks, Platform, Product Family
	Product Line Model vs. Variant Model
	Example of a »simple« Product Line Model�Variants of a Vehicle
	Case Study Example
	An even simpler Example: Online Shop Family
	A valid Variant
	Behavior Model of the Product Family�150% Model
	Feature Mapping
	A Product‘s Behavior �100% Model
	Model-Based Testing
	Model-Based Testing
	Tools for Model-Based Testing
	Model-Based Testing: Automation of Test Design
	Model-Based Testing: Automation of Test Design
	Automatic Test Generation with Test Goals
	Model-Based Testing of Product Lines
	General Approaches to MBT for SPL
	Binding Variability BEFORE Test Case Design �Product-Centric
	Top-Down�Product-Centric
	Binding Variability AFTER Test Case Generation�Domain-Centric�
	Bottom-Up�Domain-Centric
	Comparison
	Evaluation
	Summary
	Summary

