How Does Nondeterminism
Occur in Test Models and
What Do We Do with It?

Alexandre Petrenko
Centre de Recherche Informatique de Montréal

CRIM, Canada
alexandre.petrenko@crim.ca

MBT 2014, Grenoble

Acknowledgements

Apologies & Disclaimer

A. Petrenko thanks A. Petrenko
This sounds improperly reflexive

Apologies for the violation of the naming convention

— Alexander K. Petrenko, aka
* Alexander Petrenko, A. K. Petrenko
* AneKkcaHgp KOHCTaHTUMHOBWMY [leTpeHKo

— Alexandre Petrenko, aka
* Alex Petrenko, A. F. Petrenko
* AnekcaHgp ¢enoposud leTpeHKo

If one finds a wrong A. Petrenko, we apologize for any
Inconvenience it may cause

Disclaimer: we try to make sure that our citation
indexes grow independently

Scope
* | will focus on nondeterminism of test models in MBT
(nondeterminismis abbreviated to ND)
— What?
— Where?
— Why?
— How?
* | will not discuss many other things related to ND, e.g.,
probabilistic models

* Strong statements if made are used to help some of you
fight jetlag and/or open discussions in workshop

Basic Models
NFA
LTS, IOTS
NFSM
EFSM
Sequence diagrams, MSC

NFA, Nondeterministic Finite Automaton

NFA with instantaneous transitions

NFA has an equivalent DFA

LTS, 10TS

ND LTS is NFA with all states accepting

|OTS, aka IOLTS refines LTS by partitioning the alphabet into
input and output actions

ND IOTS

— Multiple initial states
— Underlying automaton is NFA, tau transitions

— Output transitions emanating from state (even in case of DFA)
differently from input transitions

— 1/0 conflicts, input and output transitions emanating from state
— Non-catastrophic divergence

e QOutput divergence

* Cycle of tau transitions, livelock
Extended also with clocks, guards and assignments on
variables, which may also induce or be used to specify ND,
though some ND in untimed models is resolved in timed
models

ND FSM

Transitions are labeled by Input/Output pair
No tau transitions

ND occurs when
— FSM has several initial states

— Underlying automaton is NFA, FSM is non-observable,
which can be transformed into observable, by NFA2DFA

— Transitions emanating from state have same input, but
different outputs

ND FSM can be unfolded into ND IOTS

ND IOTS can be folded into ND FSM if it has no tau
transitions, divergence, /O conflicts

EFSM

* Extensions with guards is a source of ND, when
guards are not disjoint

* Extensions with timers is a source of ND,
when timeout occurs with input event

* Deployedin an asynchronous platform, input
variables changes may result in ND, since
intermediate values can trigger a wrong
transition (input races in asynchronous hardware)

V1:0->1 (\
— V1=0&V2=0 V1=1&V2=1
V2:0->1

. J

ND in Sequence Diagrams

Parallel fragments and co-regions

The alternative fragments represent choices
that the implementation may choose between
in order to conform to the specification

Race conditions and weak sequencing
mplied scenarios - inconsistency or ND?

Process divergence and non-local choice

Process Divergence
Non-local Choice

msc M1
msc MSC1 L. ‘
1 Pl P2
| e - a =
s e
MSCI - — .
*mxcqz e msc M2
' _‘ Pl P2 '
{ * s M
b |
: g
— — £ X
{a) { b)

Fig. 1. MSC specification with: (a) process divergence; (b) non-local brane

Design and Test Models

Test models differ from design models
— Behavior testable with a given tester
— Assumptions of a test engineer/modeller

Design models have often semantics defined by a
commercial tool

Tools supporting testing developed by other
companies need to use test models with a clear
semantics

Open source tool development is gaining the
momentum

How Does ND Occur?

e Sources intrinsicto IUT, as an atomic unit for
testing

— Inherent ND; discussions on “can a commercial
software product be ND?” are out of scope

— [UT is composed from deterministic modules

* Sources extrinsic to IUT

— SUT where IUT is embedded (integration testing)
— Test environment
— Test modeller

ND in Modular IUT

* Message-based communication
— Asynchronous interactions via queues
— Races lead to ND

— The environment providing inputs in transient
(non quiescent) states trigger ND

e Shared variables communication

— Intermediate output valuations if available to the
environment may appear ND

Extrinsic: IUT is in SUT

SUT is modelled by communicating modules and
IUT is only one of them to be tested, the other
are assumed to be fault-free, they constitute the
context for IUT

Embedded testing, aka testing in context

Context creates controllability and observability
problems

With the context equally processing different IUT
behaviors a test model of IUT is ND (example
provided)

Machine

Coffee Shop SUT

Waiter

Coin
Button
Hit

-

.

Lamp

Espresso
Idle

Customer (environment)

Espresso-please
Money

B/l
H/I
C/l

H/I

Espresso-served
Thanks
Sorry

15

Machine

Composing FSMs

Waiter

Coin
Button
Hit

Lamp
Espresso
Idle

Espresso-please
Money

h
>

B/l
H/I
C/L
C/l

H/I

Espresso-served

Thanks

Sorry

Global FSM
Ep/S Ep/S
M/T

Ep/Es _

A). (B

M/T

16

Embedded Testing

e Assume we can access the coffee machine
only via the waiter

Coin
— itis not directly controllable lﬁlﬂt&
— > .
I A Lam —
it is not directly observable S | e

e What is the test model =
to check the conformance?

Espresso-please
Money

.
>

Espresso-served

Thanks
Sorry

* |t should allow IUT to have fault tolerated by
the context

17

ND Test Model of Coffee Machine

Espresso-please

Coin
Button
Hit

Money

\>

<
<

>

/E/AM w

H/I

B/E

M

C/L

Cl/
H/I

Y

>

Lamp Espresso-served

tester

Thanks
Sorry

Espresso

Tester cannot distinguish A from M
since M composed with W gives the

same global FSM
IUT appears ND to the tester

The Problem of Unknown Component

Combined with a known part of a system
it must satisfy a given system’s specification

I Unknown —>
component

19

Unifying Framework

e Abstract equations over languages

CcompXCA
* Solution$S
ScCcompA

‘ C ’ X ‘

20

Tiziano Villa - Nina Yevtushenko
Robert K. Brayton - Alan Mishchenko
Alexandre Petrenko

Alberto Sangiovanni-Vincentelli

The Unknown
Component

Problem

Theory and Applications

@ Springer

21

How Does ND Occur?

— Test environment
— Test modeller

Extrinsic: Test Environment

Distributed interfaces
Fastvs. slow tester (quiescence of SUT)

Queued testing

Impaired controllability (e.g., some inputs are
controlled by other running components)

Limited observability, e.g., imprecise
timestamping in observers

Distributed testers

Fast vs. Slow Tester

Fast tester can submit input only when A is in quiescent state,
but the whole SUT may not necessarily be in a global quiescent
state

How to detect global quiescence in a distributed system?

24

Limited Observability

?a

And what if the tester wants to submit b only after 1?

Extrinsic: Test Modeller

Uses ND to define a test model for a given tester

Adds ND expressing

— Uncertainty and partial knowledge
— Don’t cares and underspecification
— Abstractions, quotients, slices, e.g., of EFSM

Models faults obtaining ND test models (example
provided)

Uses model transformation that yields ND

Uses fragmented test models, e.g., HMSC, a set
of SD, if combined, exhibit ND (implied scenarios)

Superinduces ND by using inadequate formalism

ND Test Models
to Formulate Fault Assumptions
G@ all :@D

b/0 £ a/0b/1 Assume we want to build tests
detectingany combination of the
c/0 c/1 b/1 followingfaults (red) in (green)
2y transitions
b/0 v all c/1
() QI
c/l c/O a/o

We build ND test model, which

) >

compactly represents n! mutants, al0 b/l
where n is the number of mutated
transitions, called b/l
Mutation machine (fault function)

c/l

Dealing with ND Test Models

What does ND reflect?

— NDinherent to IUT

— IUT enclosed in SUT

— Limited power of a tester

— Variability from the test modeller

Do we use ND test model for an ND IUT or not?

How to force ND IUT to exhibit all the behavior with a
test case (complete testing assumption)?

Should a conforming IUT show all the behavior as the
model, i.e., trace containment or trace equivalence?

Can chosen conformance relation be tested by a given
tester?

How do we actually test for it?

Testing ND IUT

* On-the-fly testing
* Pre-compute test cases

— A preset test case uses a single input sequence
which should repeatedly applied to IUT to ensure
that the complete testing assumption is satisfied
(IUT is assumed to be fair to the tester)

— An adaptive test case is an acyclic IOTS or FSM,
input-complete (from IUT) and at most one output
in each state

On-the-fly Testing

* Termination conditions
— Time limit
— Length limit
— Reaching target states

 ND models esp. not input-enabled with I/O conflicts
are problematic

* No fault coverage?

@ alo %@ b/1 @ @ ?a

. ?a

Key Problems
in Test Generation from ND Models

* Test cases
— How state can be reached?
— How transition can be covered?
— How state can be identified?

 Test suites

— What are the test generation termination criteria,
test coverage or adequacy criteria

— How to generate a minimal one for a given
criterion?

State Reachability

all
- O

a/0b/1

al/l

/0
O—E—®

a/0
al/l b/1

(z) (4] > ©

a,c/l

b/1

 |f we want to take IUT into a statethat correspond to a

given state of ND test model it is not always possible, since

a conforming IUT may not have any corresponding state

* Ifitis has the state of the test model that is “definitely
reachable”, as it must have a corresponding state in any
conforming IUT

* MC may not help solve this problem if test models are ND

Covering Transitions

Transitions emanating from a “non-definitely
reachable” state of the test model (red) transitions
may not “implemented” in a conforming IUT

MC may not help solve this problem if test models
are ND

State Identification via
Distinguishability

(1\ all N
G\ f Z_D Distinguishingstates 1 and 3

a,c/l

* |n case of FSM, we often consider that test models are
minimized, and do not have indistinguishable states

* Atthe same time, the existing work on IOTS does not care
about minimality of test models

e See our paper with Simao

State Distinguishability
and Mutant Killing

 Mutant killing approaches in case of ND test models
rely on state distinguishability which in turn depends
on the conformance relation

e Strong and weak distinguishing sequences

e As we concluded in Boroday, S., Petrenko, A., and Groz, R.,
“Can a Model Checker Generate Tests for Non-Deterministic Systems?”

Electronic Notes in Theoretical Computer Science, 190 (2) August 2007
model checking in case of ND will often generate
only a fragment of test case

Test Coverage Criteria

* Test purposes
 ND test model coverage

— Transition coverage for queued testing of I0TS
with /O conflicts (see Huo & Petrenko)

* Faultcoverage

— ND model (faults in ND IUT)

— ND mutation machine obtained from D model
(faults in D IUT)

Fault Coverage is Based on
Generic Fault Model

(Specification model, Conformance relation, Fault
domain)

Specification model is FSM, EFSM, 10TS

Conformance relation is trace equivalence, trace
inclusion, x-ioco, where x is present or not

Fault domain is a set of IUT models, mutants of
the specification model, aka failure models

— Universe of FSMs, IOTS with certain properties, e.g.,
state number

— NFSM that has a specification model as a submachine

Example of Fault Domain

/
D————T >

b/0 2 a/0b/1
c/0 c/l
2/0 b/1
b/0O ¥ al/l c/l
/. '
3 4
G\r — l\)D

Mutation machine defines a
fault domain, as a set of its
deterministic submachines

Note that the mutation
machine with all possible 4
states mutantsis a chaos
machine

Assume we want to build tests
detectingany combination of the
followingfaults (red) in (green)
transitions

) >

a/l0b/1

b/1

Conclusions

Explaining ND in test models by just a simple
under-specification does not help us advancing in
testing with such models

Better understanding of the nature of various
flavors and uses of ND

Construction of test models from available
artefacts, including model transformation
approaches and tools

Test generation theories are not mature enough
to offer solutions to industry dealing with ND

Thank you very much

