
How Does Nondeterminism
Occur in Test Models and
What Do We Do with It?

Alexandre Petrenko

Centre de Recherche Informatique de Montréal

CRIM, Canada
alexandre.petrenko@crim.ca

MBT 2014, Grenoble

Acknowledgements
Apologies & Disclaimer

• A. Petrenko thanks A. Petrenko
• This sounds improperly reflexive
• Apologies for the violation of the naming convention

– Alexander K. Petrenko, aka
• Alexander Petrenko, A. K. Petrenko
• Александр Константинович Петренко

– Alexandre Petrenko, aka
• Alex Petrenko, A. F. Petrenko
• Александр федорович Петренко

• If one finds a wrong A. Petrenko, we apologize for any
inconvenience it may cause

• Disclaimer: we try to make sure that our citation
indexes grow independently

2

Scope
• I will focus on nondeterminism of test models in MBT

(nondeterminism is abbreviated to ND)

– What?

– Where?

– Why?

– How?

• I will not discuss many other things related to ND, e.g.,
probabilistic models

• Strong statements if made are used to help some of you
fight jetlag and/or open discussions in workshop

3

Basic Models
• NFA

• LTS, IOTS

• NFSM

• EFSM

• Sequence diagrams, MSC

4

NFA, Nondeterministic Finite Automaton

NFA with instantaneous transitions

NFA has an equivalent DFA

5

LTS, IOTS
• ND LTS is NFA with all states accepting
• IOTS, aka IOLTS refines LTS by partitioning the alphabet into

input and output actions
• ND IOTS

– Multiple initial states
– Underlying automaton is NFA, tau transitions
– Output transitions emanating from state (even in case of DFA)

differently from input transitions
– I/O conflicts, input and output transitions emanating from state
– Non-catastrophic divergence

• Output divergence
• Cycle of tau transitions, livelock

• Extended also with clocks, guards and assignments on
variables, which may also induce or be used to specify ND,
though some ND in untimed models is resolved in timed
models

6

ND FSM

• Transitions are labeled by Input/Output pair

• No tau transitions

• ND occurs when
– FSM has several initial states

– Underlying automaton is NFA, FSM is non-observable,
which can be transformed into observable, by NFA2DFA

– Transitions emanating from state have same input, but
different outputs

• ND FSM can be unfolded into ND IOTS

• ND IOTS can be folded into ND FSM if it has no tau
transitions, divergence, I/O conflicts

7

EFSM
• Extensions with guards is a source of ND, when

guards are not disjoint
• Extensions with timers is a source of ND,

when timeout occurs with input event
• Deployed in an asynchronous platform, input

variables changes may result in ND, since
intermediate values can trigger a wrong
transition (input races in asynchronous hardware)

V1 V2

V1=0&V2=0 V1=1&V2=1
V1:0 1

V2:0 1

8

ND in Sequence Diagrams

• Parallel fragments and co-regions

• The alternative fragments represent choices
that the implementation may choose between
in order to conform to the specification

• Race conditions and weak sequencing

• Implied scenarios - inconsistency or ND?

• Process divergence and non-local choice

9

10

Process Divergence
Non-local Choice

Design and Test Models

• Test models differ from design models
– Behavior testable with a given tester
– Assumptions of a test engineer/modeller

• Design models have often semantics defined by a
commercial tool

• Tools supporting testing developed by other
companies need to use test models with a clear
semantics

• Open source tool development is gaining the
momentum

11

How Does ND Occur?

• Sources intrinsic to IUT, as an atomic unit for
testing
– Inherent ND; discussions on “can a commercial

software product be ND?” are out of scope

– IUT is composed from deterministic modules

• Sources extrinsic to IUT
– SUT where IUT is embedded (integration testing)

– Test environment

– Test modeller

12

ND in Modular IUT

• Message-based communication
– Asynchronous interactions via queues

– Races lead to ND

– The environment providing inputs in transient
(non quiescent) states trigger ND

• Shared variables communication
– Intermediate output valuations if available to the

environment may appear ND

13

Extrinsic: IUT is in SUT

• SUT is modelled by communicating modules and
IUT is only one of them to be tested, the other
are assumed to be fault-free, they constitute the
context for IUT

• Embedded testing, aka testing in context

• Context creates controllability and observability
problems

• With the context equally processing different IUT
behaviors a test model of IUT is ND (example
provided)

14

15

Coffee Shop SUT

Lamp
Espresso
Idle

Coin
Button
Hit

Espresso-please
Money

Espresso-served
Thanks
Sorry

1

2

C/L B/E

B/I

H/I

C/I

H/I

A

B

Ep
T

D

C

Es M

c

b d

a

M/T

I/H

Ep/C

E/Es
L/B

E/Es L/B

I/S

Machine Waiter Customer (environment)

16

Composing FSMs

Lamp
Espresso
Idle

Coin
Button
Hit

Espresso-please
Money

Espresso-served
Thanks
Sorry

1

2

C/L B/E

B/I

H/I

C/I

H/I

c

b d

a M/T

I/H

Ep/C

E/Es
L/B

E/Es L/H

I/S

Machine Waiter Global FSM

Ep/S Ep/S

M/T

 Ep/Es

M/T

A B

M/T

Ep/S

17

Embedded Testing

• Assume we can access the coffee machine
only via the waiter

– it is not directly controllable

– it is not directly observable

• What is the test model
to check the conformance?

• It should allow IUT to have fault tolerated by
the context

Lamp

Espresso

Idle

Coin

Button

Hit

Espresso-please

Money

Espresso-served

Thanks

Sorry

?

18

ND Test Model of Coffee Machine

Lamp

Espresso

Idle

Coin

Button

Hit

Espresso-please

Money

Espresso-served

Thanks

Sorry

1

3 2

C/I

C/E

H/E
C/L

B/E

H/L
H/I B/L

 Tester cannot distinguish A from M

 since M composed with W gives the

same global FSM

IUT appears ND to the tester

A

1

2

C/L B/E

B/I

H/I

C/I

H/I

tester

M

W

The Problem of Unknown Component

Combined with a known part of a system
it must satisfy a given system’s specification

Unknown
component

19

Unifying Framework

• Abstract equations over languages

C comp X A

• Solution S

S C comp A

20

X C
A

21

How Does ND Occur?

• Sources intrinsic to IUT, as an atomic unit for
testing
– Inherent ND; discussions on “can a commercial

software product be ND?” are out of scope

– IUT is composed from deterministic modules

• Sources extrinsic to IUT
– SUT where IUT is embedded (integration testing)

– Test environment

– Test modeller

22

Extrinsic: Test Environment

• Distributed interfaces

• Fast vs. slow tester (quiescence of SUT)

• Queued testing

• Impaired controllability (e.g., some inputs are
controlled by other running components)

• Limited observability, e.g., imprecise
timestamping in observers

• Distributed testers

23

Fast vs. Slow Tester

24

B A

Fast tester can submit input only when A is in quiescent state,
but the whole SUT may not necessarily be in a global quiescent
state
How to detect global quiescence in a distributed system?

Limited Observability

25

1 2
?a

!0

3
!1

4 5

!0

!1

!{0,1}

?b

And what if the tester wants to submit b only after 1?

?a

Extrinsic: Test Modeller
• Uses ND to define a test model for a given tester

• Adds ND expressing
– Uncertainty and partial knowledge

– Don’t cares and underspecification

– Abstractions, quotients, slices, e.g., of EFSM

• Models faults obtaining ND test models (example
provided)

• Uses model transformation that yields ND

• Uses fragmented test models , e.g., HMSC, a set
of SD, if combined, exhibit ND (implied scenarios)

• Superinduces ND by using inadequate formalism

 26

ND Test Models
to Formulate Fault Assumptions

1 2

4

c/1

a/1

c/1

c/0

c/1 a/1

b/0

a/0

3

b/0

a/0 b/1

b/1

1 2

4

c/1

a/1

c/1

c/0

c/1 a/1

b/0

a/0

3

b/0

a/0 b/1

b/1

a/0 c/0

Assume we want to build tests
detecting any combination of the
following faults (red) in (green)
transitions

We build ND test model, which
compactly represents n! mutants,
where n is the number of mutated
transitions, called
Mutation machine (fault function)

c/1

27

Dealing with ND Test Models
• What does ND reflect?

– ND inherent to IUT
– IUT enclosed in SUT
– Limited power of a tester
– Variability from the test modeller

• Do we use ND test model for an ND IUT or not?
• How to force ND IUT to exhibit all the behavior with a

test case (complete testing assumption)?
• Should a conforming IUT show all the behavior as the

model, i.e., trace containment or trace equivalence?
• Can chosen conformance relation be tested by a given

tester?
• How do we actually test for it?

28

Testing ND IUT

• On-the-fly testing

• Pre-compute test cases

– A preset test case uses a single input sequence
which should repeatedly applied to IUT to ensure
that the complete testing assumption is satisfied
(IUT is assumed to be fair to the tester)

– An adaptive test case is an acyclic IOTS or FSM,
input-complete (from IUT) and at most one output
in each state

29

On-the-fly Testing
• Termination conditions

– Time limit

– Length limit

– Reaching target states

• ND models esp. not input-enabled with I/O conflicts
are problematic

• No fault coverage?

30

b/1 a/0

a/0

a/1

1 2

4 5

3 1 2

4

!0

?a

?b

3
!1, !0

5

?a
6

?a

Key Problems
in Test Generation from ND Models

• Test cases
– How state can be reached?

– How transition can be covered?

– How state can be identified?

• Test suites
– What are the test generation termination criteria,

test coverage or adequacy criteria

– How to generate a minimal one for a given
criterion?

31

State Reachability

32

a/0

1

a/1

3
a/0

4

a/1

b/1

2

1 2

4

c/1

a/1

a,c/1

a,c/0

c/1

c/1 a/1

b/0

3

b/0

a/0 b/1

b/1

a/0

• If we want to take IUT into a state that correspond to a
given state of ND test model it is not always possible, since
a conforming IUT may not have any corresponding state

• If it is has the state of the test model that is “definitely
reachable”, as it must have a corresponding state in any
conforming IUT

• MC may not help solve this problem if test models are ND

Covering Transitions

Transitions emanating from a “non-definitely
reachable” state of the test model (red) transitions
may not “implemented” in a conforming IUT

MC may not help solve this problem if test models
are ND

1 2

4

!0

?a

!b

3
!1

33

State Identification via
Distinguishability

34

1 2

4

c/1

a/1

a,c/1

a,c/0

c/1

c/1 a/1

b/0

a/0

3

b/0

a/0 b/1

b/1
a/0

b/1

1

13

a/1

b/0

a/1

32

3

24

a/0

Distinguishing states 1 and 3

• In case of FSM, we often consider that test models are
minimized, and do not have indistinguishable states

• At the same time, the existing work on IOTS does not care
about minimality of test models

• See our paper with Simao

State Distinguishability
and Mutant Killing

• Mutant killing approaches in case of ND test models
rely on state distinguishability which in turn depends
on the conformance relation

• Strong and weak distinguishing sequences

• As we concluded in Boroday, S., Petrenko, A., and Groz, R.,

“Can a Model Checker Generate Tests for Non-Deterministic Systems?”

Electronic Notes in Theoretical Computer Science, 190 (2) August 2007
model checking in case of ND will often generate
only a fragment of test case

35

Test Coverage Criteria

• Test purposes

• ND test model coverage

– Transition coverage for queued testing of IOTS
with I/O conflicts (see Huo & Petrenko)

• Fault coverage

– ND model (faults in ND IUT)

– ND mutation machine obtained from D model
(faults in D IUT)

36

Fault Coverage is Based on
Generic Fault Model

• (Specification model, Conformance relation, Fault
domain)

• Specification model is FSM, EFSM, IOTS

• Conformance relation is trace equivalence, trace
inclusion, x-ioco, where x is present or not

• Fault domain is a set of IUT models, mutants of
the specification model, aka failure models
– Universe of FSMs, IOTS with certain properties, e.g.,

state number

– NFSM that has a specification model as a submachine

37

Example of Fault Domain

1 2

4

c/1

a/1

c/1

c/0

c/1 a/1

b/0

a/0

3

b/0

a/0 b/1

b/1

1 2

4

c/1

a/1

c/1

c/0

c/1 a/1

b/0

a/0

3

b/0

a/0 b/1

b/1

a/0 c/0

Assume we want to build tests
detecting any combination of the
following faults (red) in (green)
transitions

Mutation machine defines a
fault domain, as a set of its
deterministic submachines

Note that the mutation
machine with all possible 4
states mutants is a chaos
machine

c/1

38

Conclusions

• Explaining ND in test models by just a simple
under-specification does not help us advancing in
testing with such models

• Better understanding of the nature of various
flavors and uses of ND

• Construction of test models from available
artefacts, including model transformation
approaches and tools

• Test generation theories are not mature enough
to offer solutions to industry dealing with ND

39

Thank you very much

40

