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Context

Context

I Model Based Testing
I Modeling
I Test Generation
I Test Execution
I Test Analysis
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Context

Modeling

I Many different models
I State based

I Finite State Machines (FSM)
I Input/Output Transition System (IOTS)
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Context

Test Generation

I Tests should be
I Sound

I Every implementation that fails is indeed faulty
I Exhaustive (for a given fault domain)

I Every fault implementation fails

I Test generation can be
I On the fly
I Preset
I Adaptive
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Context

Test Execution

I Interaction with system

I For FSM, it is straightforward
I For IOTS, it can be

I Synchronous
I Controllability problems
I Input/Output Conflict

I Asynchronous
I Decidability problems
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Problem Statement

Problem Statement

I Is it possible to generate complete (sound and exhaustive) test
suites for IOTS?

I A la Finite State Machines
I Conformance relation

I ioco
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Problem Statement

Problem Statement (II)

I It is known that:
I It is decidable for FSMs

I Many methods available
I It is undecidable whether two IOTSs are equivalent, when

interacting via FIFO queues (Hierons, 2012)
I In the general case

I But,
I Is there a subclass of IOTS models for which can generate

complete test suites?
I Under which assumptions?

Adenilso Simao Alexandre Petrenko

Generating Complete and Finite Test Suite for ioco



Introduction IOTS Generating Complete Tests Example Conclusion

Problem Statement

Existing solutions

I I/O conflicts yield uncontrollable tests
I Solved via FIFO queues (or ignored)

I Nondeterministic test suite generation
I Theoretically complete, but unbounded
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Summary of Results

Summary of Results

I Test generation method which produces tests that are
I Finite (and bounded)
I Controllable
I Sound
I Exhaustive for a given class of faults
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Summary of Results

Input Eager IOTS

I The key assumption
I The implementation is assumed to be eager for inputs
I It solves conflicts favoring inputs over outputs
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Input/Output Transition Systems

Definition
(S,s0, I,O,hS), where S is a finite set of states and s0 ∈ S, is the initial
state, I and O are disjoint sets of input and output actions, respectively,
and hS ⊆ S× (I∪O)×S is the transition relation.
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Example

Example
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Input/Output Conflicts

Input/Output Conflicts

I Input states
I Only inputs are enabled
I Quiescent

I Bridge traces
I From input state to input states

I Quasi-stable state
I There is a conflict between inputs and outputs
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Input/Output Conflicts

Input/Output Conflicts (II)
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Generating Complete Tests

I HSI-method for FSMs
I Uses sets of distinguishing input sequences,

I Harmonized state identifiers, one per state
I Any two identifiers share an input sequence which distinguishes the

two states
I Appended to state and transition covers

I Checks that every state of the implementation corresponds to some
state of the specification

I Checks that every transition of the implementation corresponds to a
transition of the specification

I Complete for a given fault domain
I All implementations which correspond to an FSM with at most a

given number of states
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Generating Complete Tests (II)

I Inspired by HSI-method
I Fault domain

I All (input eager) IOTS with at most as many input states as the
specification

I State reachability
I Transition coverage

I Bridge traces
I Cov(s,x)
I (s,x)-cover

I State distinguishability
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State Reachability

State Reachability

I Guarantees that s is reached in any conforming implementation
I Preamble Cs for state s

I A submachine of the specification
I Single-input
I Acyclic
I Output-preserving

I We propose an algorithm for computing preamble
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State Reachability

State Reachability (II)
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State Reachability

State Reachability (III)

I Input state cover
I Set of preambles, one for each input state

I Transition cover
I Preambles of the state cover followed by bridge traces
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Transition Cover

Transition Cover

I A transition cover V of S is the set of preambles of an input state
cover chained with (s,x)-covers
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State Distinguishability

State Distinguishability

I Given two input states s1 and s2, how to decide in which of the
states the implementation is in

I Separator R(s1,s2)
I Single-input acyclic machine
I Traces are disjoint
I Two sink states, one for each state (s1 and s2)

I We propose an algorithm for generation of a separator
I Based on product machine

I Minimality
I There is a separator for each pair of states
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State Distinguishability

Separators
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State Distinguishability

Distinguishers

I Distinguisher W(s1,s2)
I Derived from R(s1,s2)
I Removing one of the sink states
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State Distinguishability

Distinguishers (II)
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State Distinguishability

State Identifiers

I State identifier ID(s)
I Set of distinguishers
I One for each input state different from s
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State Distinguishability

Harmonized State Identifiers

I Each pair of state identifiers has common prefix
I Long enough to distinguish the states

I HSI
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Complete Test Suite

Complete Test Suite

I The set of IOTSs obtained by chaining each IOTS from the input
state cover and transition cover with a corresponding harmonized
state identifier

I D = {T@sR | s ∈ sink(T),T ∈ (Z ∪V ),R ∈ ID(s)}, where
I sink(T) is the set of sink states of T
I Z is a state cover.
I V is a transition cover

I Complete with fail state
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Example

I Test Case TC(C2@2Cov(2,a)@1W(1,4)).
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Conclusion

I Generating Complete and Finite Test Suite for ioco: Is It
Possible?

I (qualified) Yes, it is.
I For some IOTS

I All input states are reachable
I All input states are distinguishable
I There are harmonized state identifiers

I Under certain assumptions
I There is no more input states in the implementation than in the

specification
I The implementation is eager for inputs

I We have proposed a method similar to HSI for FSM
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Future Work

I Relax the constraints and assumptions
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