
Introduction IOTS Generating Complete Tests Example Conclusion

Generating Complete and Finite Test Suite for ioco
Is It Possible?

Adenilso Simao
Alexandre Petrenko

adenilso@icmc.usp.br

April/06/2014
9th Workshop on Model-Based Testing

Grenoble, France

Adenilso Simao Alexandre Petrenko

Generating Complete and Finite Test Suite for ioco



Introduction IOTS Generating Complete Tests Example Conclusion

Introduction

Adenilso Simao Alexandre Petrenko

Generating Complete and Finite Test Suite for ioco



Introduction IOTS Generating Complete Tests Example Conclusion

Introduction (II)

Adenilso Simao Alexandre Petrenko

Generating Complete and Finite Test Suite for ioco



Introduction IOTS Generating Complete Tests Example Conclusion

Introduction (III)

Adenilso Simao Alexandre Petrenko

Generating Complete and Finite Test Suite for ioco



Introduction IOTS Generating Complete Tests Example Conclusion

Introduction (IV)

Adenilso Simao Alexandre Petrenko

Generating Complete and Finite Test Suite for ioco



Introduction IOTS Generating Complete Tests Example Conclusion

Context

Context

I Model Based Testing
I Modeling
I Test Generation
I Test Execution
I Test Analysis

Adenilso Simao Alexandre Petrenko

Generating Complete and Finite Test Suite for ioco



Introduction IOTS Generating Complete Tests Example Conclusion

Context

Modeling

I Many different models
I State based

I Finite State Machines (FSM)
I Input/Output Transition System (IOTS)

Adenilso Simao Alexandre Petrenko

Generating Complete and Finite Test Suite for ioco



Introduction IOTS Generating Complete Tests Example Conclusion

Context

Test Generation

I Tests should be
I Sound

I Every implementation that fails is indeed faulty
I Exhaustive (for a given fault domain)

I Every fault implementation fails

I Test generation can be
I On the fly
I Preset
I Adaptive

Adenilso Simao Alexandre Petrenko

Generating Complete and Finite Test Suite for ioco



Introduction IOTS Generating Complete Tests Example Conclusion

Context

Test Execution

I Interaction with system

I For FSM, it is straightforward
I For IOTS, it can be

I Synchronous
I Controllability problems
I Input/Output Conflict

I Asynchronous
I Decidability problems

Adenilso Simao Alexandre Petrenko

Generating Complete and Finite Test Suite for ioco



Introduction IOTS Generating Complete Tests Example Conclusion

Problem Statement

Problem Statement

I Is it possible to generate complete (sound and exhaustive) test
suites for IOTS?

I A la Finite State Machines
I Conformance relation

I ioco

Adenilso Simao Alexandre Petrenko

Generating Complete and Finite Test Suite for ioco



Introduction IOTS Generating Complete Tests Example Conclusion

Problem Statement

Problem Statement (II)

I It is known that:
I It is decidable for FSMs

I Many methods available
I It is undecidable whether two IOTSs are equivalent, when

interacting via FIFO queues (Hierons, 2012)
I In the general case

I But,
I Is there a subclass of IOTS models for which can generate

complete test suites?
I Under which assumptions?

Adenilso Simao Alexandre Petrenko

Generating Complete and Finite Test Suite for ioco



Introduction IOTS Generating Complete Tests Example Conclusion

Problem Statement

Existing solutions

I I/O conflicts yield uncontrollable tests
I Solved via FIFO queues (or ignored)

I Nondeterministic test suite generation
I Theoretically complete, but unbounded

Adenilso Simao Alexandre Petrenko

Generating Complete and Finite Test Suite for ioco



Introduction IOTS Generating Complete Tests Example Conclusion

Summary of Results

Summary of Results

I Test generation method which produces tests that are
I Finite (and bounded)
I Controllable
I Sound
I Exhaustive for a given class of faults

Adenilso Simao Alexandre Petrenko

Generating Complete and Finite Test Suite for ioco



Introduction IOTS Generating Complete Tests Example Conclusion

Summary of Results

Input Eager IOTS

I The key assumption
I The implementation is assumed to be eager for inputs
I It solves conflicts favoring inputs over outputs

Adenilso Simao Alexandre Petrenko

Generating Complete and Finite Test Suite for ioco



Introduction IOTS Generating Complete Tests Example Conclusion

Input/Output Transition Systems

Definition
(S,s0, I,O,hS), where S is a finite set of states and s0 ∈ S, is the initial
state, I and O are disjoint sets of input and output actions, respectively,
and hS ⊆ S× (I∪O)×S is the transition relation.

Adenilso Simao Alexandre Petrenko

Generating Complete and Finite Test Suite for ioco



Introduction IOTS Generating Complete Tests Example Conclusion

Example

Example

Adenilso Simao Alexandre Petrenko

Generating Complete and Finite Test Suite for ioco



Introduction IOTS Generating Complete Tests Example Conclusion

Input/Output Conflicts

Input/Output Conflicts

I Input states
I Only inputs are enabled
I Quiescent

I Bridge traces
I From input state to input states

I Quasi-stable state
I There is a conflict between inputs and outputs

Adenilso Simao Alexandre Petrenko

Generating Complete and Finite Test Suite for ioco



Introduction IOTS Generating Complete Tests Example Conclusion

Input/Output Conflicts

Input/Output Conflicts (II)

Adenilso Simao Alexandre Petrenko

Generating Complete and Finite Test Suite for ioco



Introduction IOTS Generating Complete Tests Example Conclusion

Generating Complete Tests

I HSI-method for FSMs
I Uses sets of distinguishing input sequences,

I Harmonized state identifiers, one per state
I Any two identifiers share an input sequence which distinguishes the

two states
I Appended to state and transition covers

I Checks that every state of the implementation corresponds to some
state of the specification

I Checks that every transition of the implementation corresponds to a
transition of the specification

I Complete for a given fault domain
I All implementations which correspond to an FSM with at most a

given number of states

Adenilso Simao Alexandre Petrenko

Generating Complete and Finite Test Suite for ioco



Introduction IOTS Generating Complete Tests Example Conclusion

Generating Complete Tests (II)

I Inspired by HSI-method
I Fault domain

I All (input eager) IOTS with at most as many input states as the
specification

I State reachability
I Transition coverage

I Bridge traces
I Cov(s,x)
I (s,x)-cover

I State distinguishability

Adenilso Simao Alexandre Petrenko

Generating Complete and Finite Test Suite for ioco



Introduction IOTS Generating Complete Tests Example Conclusion

State Reachability

State Reachability

I Guarantees that s is reached in any conforming implementation
I Preamble Cs for state s

I A submachine of the specification
I Single-input
I Acyclic
I Output-preserving

I We propose an algorithm for computing preamble

Adenilso Simao Alexandre Petrenko

Generating Complete and Finite Test Suite for ioco



Introduction IOTS Generating Complete Tests Example Conclusion

State Reachability

State Reachability (II)

Adenilso Simao Alexandre Petrenko

Generating Complete and Finite Test Suite for ioco



Introduction IOTS Generating Complete Tests Example Conclusion

State Reachability

State Reachability (III)

I Input state cover
I Set of preambles, one for each input state

I Transition cover
I Preambles of the state cover followed by bridge traces

Adenilso Simao Alexandre Petrenko

Generating Complete and Finite Test Suite for ioco



Introduction IOTS Generating Complete Tests Example Conclusion

Transition Cover

Transition Cover

I A transition cover V of S is the set of preambles of an input state
cover chained with (s,x)-covers

Adenilso Simao Alexandre Petrenko

Generating Complete and Finite Test Suite for ioco



Introduction IOTS Generating Complete Tests Example Conclusion

State Distinguishability

State Distinguishability

I Given two input states s1 and s2, how to decide in which of the
states the implementation is in

I Separator R(s1,s2)
I Single-input acyclic machine
I Traces are disjoint
I Two sink states, one for each state (s1 and s2)

I We propose an algorithm for generation of a separator
I Based on product machine

I Minimality
I There is a separator for each pair of states

Adenilso Simao Alexandre Petrenko

Generating Complete and Finite Test Suite for ioco



Introduction IOTS Generating Complete Tests Example Conclusion

State Distinguishability

Separators

Adenilso Simao Alexandre Petrenko

Generating Complete and Finite Test Suite for ioco



Introduction IOTS Generating Complete Tests Example Conclusion

State Distinguishability

Distinguishers

I Distinguisher W(s1,s2)
I Derived from R(s1,s2)
I Removing one of the sink states

Adenilso Simao Alexandre Petrenko

Generating Complete and Finite Test Suite for ioco



Introduction IOTS Generating Complete Tests Example Conclusion

State Distinguishability

Distinguishers (II)

Adenilso Simao Alexandre Petrenko

Generating Complete and Finite Test Suite for ioco



Introduction IOTS Generating Complete Tests Example Conclusion

State Distinguishability

State Identifiers

I State identifier ID(s)
I Set of distinguishers
I One for each input state different from s

Adenilso Simao Alexandre Petrenko

Generating Complete and Finite Test Suite for ioco



Introduction IOTS Generating Complete Tests Example Conclusion

State Distinguishability

Harmonized State Identifiers

I Each pair of state identifiers has common prefix
I Long enough to distinguish the states

I HSI

Adenilso Simao Alexandre Petrenko

Generating Complete and Finite Test Suite for ioco



Introduction IOTS Generating Complete Tests Example Conclusion

Complete Test Suite

Complete Test Suite

I The set of IOTSs obtained by chaining each IOTS from the input
state cover and transition cover with a corresponding harmonized
state identifier

I D = {T@sR | s ∈ sink(T),T ∈ (Z ∪V ),R ∈ ID(s)}, where
I sink(T) is the set of sink states of T
I Z is a state cover.
I V is a transition cover

I Complete with fail state

Adenilso Simao Alexandre Petrenko

Generating Complete and Finite Test Suite for ioco



Introduction IOTS Generating Complete Tests Example Conclusion

Example

I Test Case TC(C2@2Cov(2,a)@1W(1,4)).

Adenilso Simao Alexandre Petrenko

Generating Complete and Finite Test Suite for ioco



Introduction IOTS Generating Complete Tests Example Conclusion

Conclusion

I Generating Complete and Finite Test Suite for ioco: Is It
Possible?

I (qualified) Yes, it is.
I For some IOTS

I All input states are reachable
I All input states are distinguishable
I There are harmonized state identifiers

I Under certain assumptions
I There is no more input states in the implementation than in the

specification
I The implementation is eager for inputs

I We have proposed a method similar to HSI for FSM

Adenilso Simao Alexandre Petrenko

Generating Complete and Finite Test Suite for ioco



Introduction IOTS Generating Complete Tests Example Conclusion

Future Work

I Relax the constraints and assumptions

Adenilso Simao Alexandre Petrenko

Generating Complete and Finite Test Suite for ioco



Introduction IOTS Generating Complete Tests Example Conclusion

Generating Complete and Finite Test Suite for ioco
Is It Possible?

Adenilso Simao
Alexandre Petrenko

adenilso@icmc.usp.br

April/06/2014
9th Workshop on Model-Based Testing

Grenoble, France

Adenilso Simao Alexandre Petrenko

Generating Complete and Finite Test Suite for ioco


	 Introduction 
	 Context 
	 Problem Statement 
	 Summary of Results 

	 IOTS 
	 Example 
	 Input/Output Conflicts 

	 Generating Complete Tests 
	 State Reachability 
	 Transition Cover 
	 State Distinguishability 
	 Complete Test Suite 

	 Example 
	 Conclusion 

