femto-st

BEBEMBESCIENCES & o
TECHNOLOGIES

Coverage Criteria for Model-Based Testing
using Property Patterns

Kalou Cabrera Castillos?, Frédéric Dadeau?, Jacques Julliand?

1LAAS — Toulouse, France
2FEMTO-ST — Besancon, France

MBT workshop — April 6th, 2014

Context: Model-Based Testing

Test Models
UML/OCL
Test Architect
Test Results
Keyword-based metrics W
testing :
on A smartestin
automatlon Ite ratlve Pr Test Generator Optimize your 7§i€en[e g

est Vianagement
Environment

CertifyI

Accelerate Tes!mg

(Semi-) automatic
Automation Layer. Automatic generation generation
Test
Automation .
Engineer Executable _ Test Publisher Test plan & Coverage
Test scripts Test cases matrix

Context: Smartesting Certifylt and UMLA4ST

* Functional test generation from UML/OCL models

 Use of a subset of UML, called UMLA4ST

3 UML diagrams: class diagrams (data model), object (initial state),
and statecharts (dynamics)

* OCLcodeis used to describe the behaviour of the operations

Running example: eCinema

«enumerations:
[E PASSWORDS
= INWVALID_PWD
= REGISTERED_PWD
= UNREGISTERED_PWD

«enumerations:
USER_NAMES
= INWALID_LUSER
= REGISTERED_USER
= UNREGISTERED _USER

@enumeration:
MSG

=IBYE

= EMPTY _PASSWCRD

= EMPTY_LSERMAME

=1 EXISTING_USER_MAME
= LOGIN_FIRST
=INO_MORE_TICKET

=1 NOME

=1 REGISTER

=1 UMNKMNOWMN_USER_MAME_PASSWCRD
=1WELCOME

= WRONG_PASSWORD

| ECinema
[Cg message MSG

£ unregister ()
2 showBought Tickets ()

{3 reqistration ()
% logout ':/
&3 login ()

§3 aoToRegister ()
§3 0o0ToHome ()
5 deleteTicket ()
&2 deleteslTickets ()
§3 closespplication ()
3 buyTicket ()
0.1 - systerm

offers

*

- all_listed _m

context login(in_userName,in_userPassword)::effect:

---@REQ: ACCOUNT_MNGT/LOG
ifin_userName = USER_NAMES::INVALID_USER then
---@AIM: LOG_Empty_User_Name
message= MSG::EMPTY_USERNAME
else
if not all_registered users->exists(name =in_userName) then
-—-@AIM: LOG_Invalid_User _Name
message= MSG::UNKNOWN_USER_NAME_PASSWORD
else
let user_found:User = all_registered users->any(name =in_userName) in
if user_found.password =in_userPassword then
---@AIM: LOG_Success
self.current_user = user_found and
message = MSG::WELCOME
else
-—-@AIM: LOG_Invalid_Password
message = MSG::WRONG_PASSWORD
endif
endif
endif

Context: Smartesting Certifylt and UMLAST

* Functional test generation from UML/OCL models

 Use of a subset of UML, called UMLA4ST

3 UML diagrams: class diagrams (data model), object (initial state),
and statecharts (dynamics)

* OCLcodeis used to describe the behaviour of the operations

* How Smartesting Certifylt works

e aims at covering of the behaviours of the operations (OCL code
coverage)

* retrievesthe traceability requirements (annotations in the code)
covered by the tests

Motivations

e Limitations of automated testing based on requirement
coverage

e testcases with limited size (steps)

 difficulty to take into account the dynamics of the system (must be
hard-coded into the model)

* possibleissues with the test target’s reachability

* QOur proposal: use temporal test properties
* How to expressthe test properties easily?
 How to characterize relevant tests?

Summary of the approach
TOCL | Test Properties

==

|
|
|
+ £\{4} £\{4, B} E\{B}

uML/OCL ‘Eﬁ‘ -
model =
Coverage criteria

Test scenarios Coverage
Test generator —
Certifylt
\ - / i
\‘-_________—"/‘

Outline

e Contextand motivations

* Property pattern language

* Coverage criteria: nominal and robustness

* Experimental results

* Conclusion and perspectives

Design of Temporal Properties using TOCL

e TOCL=Temporal OCL

e overlay of OCL to express temporal properties
* based on Dwyer et al. property patterns [DAC99]
* does not require the use of a complex formalism (e.g. LTL, CTL)

* Property = Pattern + Scope
* Pattern:describes occurrences or orderings of events

* Scope:describes the observation window on which the patternis
supposedto hold

[DAC99] M. Dwyer, G. Avrunin, and J. Corbett. Patterns in property specifications for finite-state verification. ICSE'99.

Temporal Properties in TOCL

Scopes

globally

after E;

after last E;

before E,

between E; and E,

between last E; and E,

after E; until E,

after last E; until E,

10

Temporal Properties in TOCL

Property Fattemns

/\

Occurrence Order

Absence / \ Bounded Precedence Response Chain Chain
. . . Existence Precedence Rcspmlse
Universality Existence
Patterns
* alwaysP
°* neverk

eventually E at least/at most/exactly k times

E, [directly] precedes E,

E, [directly] follows E,

11

0
Temporal Properties in TOCL
Events: operation calls
_ postcondition (optional)
operation
name \ /
isCalled(op, pre, post, tags)
precondition (option/al) >tof tags/activated behaviors (optional)

becomesTrue(state predicate)

e

Evaluated to false before the event, and true after the event

12

Temporal Properties in TOCL

« Tickets can only be bought when the user is connected to the system. »

* Property 1
never isCalled(buyTicket,{@AIM:BUY_Success})
before isCalled(login,{@AIM:LOG_Success})

* Property 2
never isCalled(buyTicket,{ @AIM:BUY_Success})
after isCalled(logout,{@AIM:LOG_Logout})
until isCalled(login,{@AIM:LOG_Success})

* Property 3
eventually isCalled(buyTicket,{@AIM:BUY_Success}) at least O times
between isCalled(login,{@AIM:LOG_Success})
and isCalled(logout,{@AIM:LOG_Logout})

13

Temporal Properties in TOCL

« Tickets can only be bought when the user is connected to the system. »

Property
never isCalled(buyTicket,{ @AIM:BUY_Success})

before isCalled(login,{@AIM:LOG_Success})

* Property 2
never isCalled(buyTicket,{ @AIM:BUY_Success}) L2
after isCalled(logout,{@AIM:LOG_Logout})
until isCalled(login,{@AIM:LOG_Success})

* Property 3
eventually isCalled(buyTicket,{ @AIM:BUY_Success}) at least O times
between isCalled(login,{@AIM:LOG_Success})
and isCalled(logout,{@AIM:LOG_Logout})

14

Temporal Properties in TOCL

« Tickets can only be bought when the user is connected to the system. »

* Property 1
never isCalled(buyTicket,{ @AIM:BUY_Success})
before isCalled(login,{@AIM:LOG_Success})

never isCalled(buyTicket,{ @AIM:BUY_Success})
after isCalled(logout,{@AIM:LOG_Logout})

until isCalled(login,{@AIM:LOG_Success})

* Property 3
eventually isCalled(buyTicket,{ @AIM:BUY_Success}) at least O times
between isCalled(login,{@AIM:LOG_Success})
and isCalled(logout,{@AIM:LOG_Logout})

EO E2 E3

15

Temporal Properties in TOCL

« Tickets can only be bought when the user is connected to the system. »

* Property 1
never isCalled(buyTicket,{ @AIM:BUY_Success})
before isCalled(login,{@AIM:LOG_Success})

* Property 2
never isCalled(buyTicket,{ @AIM:BUY_Success})
after isCalled(logout,{@AIM:LOG_Logout})
until isCalled(login,{@AIM:LOG_Success})

-~

eventually isCalled(buyTicket,{ @AIM:BUY_Success}) at least O times
between isCalled(login,{@AIM:LOG_Success})

and isCalled(logout,{@AIM:LOG_Logout})

EO E2 E3

16

Outline

e Contextand motivations

* Property pattern language

* Coverage criteria: nominal and robustness

* Experimental results

* Conclusion and perspectives

17

Using the properties for testing

* Existing automata coverage criteria are not appropriate

=» all transitions are considered equally!

EO = isCalled(login,{ @AIM:LOG_Success})

E2 = isCalled(logout,{@AIM:LOG_Logout})
E3 = isCalled(buyTicket,{@AIM:BUY_Success})

Need to distinguish two different kinds of transition

= a-transitions, labelled by events expressed in the property

—> 2-transitions, the others
@D - {E0}
Also, the origin of all the transitions (scope/pattern)is known.

18

Using the properties for testing

* New coverage criteria for the property automata

* alpha-transition coverage: coverage of the
transitions labelled by events expressed in
the property

Transitions to cover:
(0, EO, 1)
(1,E3, 1)
(1,E2, 2)
(2,EOQ, 1)

19

Using the properties for testing

 New coverage criteria for the property automata

* alpha-transition-pairs coverage: coverage of the
pairs of transitions labelled by events expressed
in the property

Pairs of transitions to cover:
<(0,EO,1);(1,E3,1)>
<(1,E3,1);(1,E2,2)>
<(1,E2,2);(2,EO,1)>
<(2,EO0,1);(1,E3,1)>
<(2,EO0,1);(1,E2,2)>

Important: strict successions of a-transitions are not
required (intermediate 2-transitions are allowed)

20

Using the properties for testing

* New coverage criteria for the property automata

* k-patterncoverage: coverage of the iterations of
the pattern

All pattern-loops have to iterated between 0 and k times.

Applicable to « repeatable » patterns:
- precedes
- follows
- eventually at least n times (if n >= k)

21

Using the properties for testing

* New coverage criteria for the property automata

* k-scopecoverage: coverage of the iterations of
the scope

All scope-loops have to iterated between 1 and k times.

Applicable to « repeatable » scopes:
- between
- after... until...

Notice: interesting paths end on a final state of the automaton

22

Using the properties for testing (cont’d)

Case of transitions leading to the error state

n. - {E0.E2} Can not be activated if we assume that
the model satisfies the property (which
is supposed to be the case)

New coverage criteria are inefficient...

=>» Specific criterion to test the
robustness of the system w.r.t. the
property

neverisCalled(buyTicket,{ @AIM:BUY_Success})
before isCalled(login,{@AIM:LOG_Success})

23

Using the properties for testing (cont’d)

Coveragecriterion: robustness

“‘ _{EO.ED} Modification of the automaton:

-the error state becomes the final state
- the event labelling the faulty transition is
mutated/weakened to be made activable

Possible mutations:
- deletion/negation of predicates (pre/post)
- deletion/change of tags

E1l:isCalled(buyTicket,{@AIM:BUY_Success}) =2 isCalled(buyTicket)

24

Using the properties for testing (cont’d)

* Two possible uses for these coverage criteria
 Measure the quality of a test suite

Generate test scenarios

Functional test suite (computed using Certifylt)
sut.buyTicket(TITLE2)

Test scenario:
(2-{EO,E1})* .E1.(Z-{EO})*. EO

Corresponding test case:

sut.buyTicket(TITLE2);
sut.login(REGISTERED USER, REGISTERED PWD)

25

Outline

e Contextand motivations

* Property pattern language

* Coverage criteria: nominal and robustness

 Experimental results

* Conclusion and perspectives

26

Experimental results

 Development of an Eclipse plug-in to support the approach

Coverage report for property propi

L= ‘ Q' = 9 2 # e T Test suite: test_suite
= - [i = Measure date: Tue Dec 18 12:12:29 CET 2012
[Package Explorer 52 = 'S i | a [6] eCinema.tocl 2]
X Property expression:
"'[&J;vesontio import 'elinema.uml’ .
Before
¥ models . isCalled(sut.login, {@AIM:LOG_Success}}
eCinema.sfr-tsfi.txt = package e(inema

Never

|=| eCinema.smtmodel| isCalled(sut.buyTicket, { @AIM:BUY_Success})}
[6] eCinema.tocl

] eCinema.uml

- context ECinema

Associated TSFls:
+ login(USER_NAME,USER_PASSWORD)

b =l RE System Library [JavaSE-1.6] o SR « buyTicket(TITLES)
¥ = coverage * The user cannot buy a ticket before logging on the system.
¥ = propl * Caption:

« E0 : isCalled(sut.login,{ @AIM:LOG_Success})

. * @INSTANCE{sut}
b [(=-images Lsugk « E1 : isCalled(sut.buyTicket,{ @AIM:BUY_Success})

b = mutations */

. —temp propl:
8 o roriE i = never isCalledCbuyTicket(),include: [BAIM:BUY_Success})

=/ prop1_robustness.html before isCalled(login(},include: {@AIM:LOG_Success})
= prop2 Overall coverage report
V [(=-tests
eCinema.tests.xml = f*E + alpha-transition coverage (coverage of the events in the property automaton): 1 /1
[sc_prop1_tagDeletion_0_0_suf0.tslt * When the user is logged, he may buy a ticket. Covered transitions: 0 — E0 — 2

*
w
—
uw
-
=

T
=

£
i+
N
N
l
i
it
e
=]

=)
-
]
—
=]
=)
[=]
=
+
B
.

alpha-transition-pair coverage (coverage of the pairs of events in the property automaton}): N/A

s¢_propl_tagDeletion_0_O_sufOxmi = S!=2PL1BHVELEREL
-pronsa T * @INSTANCE{sut}

.

k-scope coverage (coverage of k iterations of the property scope): N/A

*/ 3 k-pattern coverage (coverage of k iterations of the property pattern): N/A
- " . = = tem ropd:
Traceability View 5% g 2 & | p prop)
® . ¥ = @ & ‘ = eventually isCalled(buyTicket(},include: {BAIM:BUY Success}) | Test coverage details
vesontio at least @ times
- 2 . [Expand all] [Collapse all]
vSFR = between isCalled{login(),include: {BAIM:L0G Success}) M
FIA_ACC.1 and isCalled(logout(),include: {BAIM:LOG_Logout}) =3 Coverage for test unregister (3e-cd-c5) - [Details]
VTSFI
logout [coverage for test goToHome (3e-7¢-05) - [Details] |
W buyticket : S
IR B Console [Coverage fo test logn (3¢ 45 12) - (Dera] |
performPurchase Property Value
login description Check that the user is logged on the system [coverage for test registration (3e-14-ae) - [Details] |
id checkConnection
tags (@AIM:BUY_Login_Mandatory), (@AIM:BUY Success) |<;We,age for test buyTicket (3e-e6-7b) - [Details] |
traced 5FRs Fla_ACC.1

SFR/TSFI/Action | Test suites | Properties | Scenarios 2 7

Experimental results

15t experiment: evaluation during industrial projects

 ANRTASCCC* —validation of smart cards security mechanisms for common criteria
evaluation, in partnership with Smartesting, Gemalto (among others)

 ANROSEP* — validation of cryptographic components, in partnership with Smartesting
and the Armaments Procurement Agency

* Evaluation procedure

e Start with an existing functional model and test suite (Certifylt)
* Designtest properties for the considered models (3 case studies, 3-4 properties each)

 Measure the property coverage criteria satisfaction

*funded by the French National research agency

28

Experimental results

Conclusions of the study

* Languageis easy to learn and use to design test properties

* however, sometimes validation engineers tend to write test cases instead of
test properties =» unsatisfied properties

Usefulness of the coverage reports
* shows which part of the properties are not covered by the tests

Relevance of the coverage criteria
* Property automata are rarely 100% covered by the functional test suite
* “Shows test configurations that one may not easily think of”

Unintended use of the properties: model validation

* Use of the test cases coverage measure to detect violations of the property
by the model

29

Experimental results

2"d experiment: evaluation of the error detection capabilities (robustness)

* Process:
* Design 6 properties for the eCinema model
* Complete the Certifylt test suite to satisfy the robustness coverage criterion
* Perform mutations on the model using the following mutation operators
* SSOR:Simple Set Operator Replacement
* SNO: Simple expression Negation Operator
e SAF: Stuck-At-False
 AD: Action Deletion
* Evaluate how many mutants are killed by the tests, and compare to the initial TS

30

Experimental results

Test suites Property-Based Testing Smartesting Certifylt
Mutations / Verdicts || C-NE | NC-NE | NC-E | C-E || C-NE | NC-NE | NC-E | C-E
SSOR 2 1 1 2 4 1 1
SNO 28 2 28 2
SAF 31 1 31 1
AD 7 12 4 15 8

Conformance (C)/Non-Conformance (NC): determined using basic observations (comparison of outputs)

Notin Error (NE), in Error state (E): determined by monitoring the states reached on the property automaton

C-NE
NC-NE
NC-E
C-E

Conform, notreaching the error state of the automaton (eq. mutant or mutant that could not be observed)

Not-Conform, not reaching the error state (killed mutant, but not because it violated the property)

Not-Conform, and reaching the error state (killed mutant, violation of the property, detected by basic observations)

Conform, but reaching an error state (unkilled mutant that violated the property, not detected by basic observations)

31

Experimental results

Test suites Property-Based Testing Smartesting Certifylt
Mutations / Verdicts || C-NE | NC-NE | NC-E | C-E || C-NE | NC-NE | NC-E | C-E
SSOR 2 1 1 2 4 ; .
SNO 28 2 28 €<
SAF 31 I
AD 7 12 4 | 15 /(2;— Q\P
e e —— 4

Conformance (C)/Non-Conformance (NC): determined using basic observations (comparison of outputs)
Notin Error (NE), in Error state (E): determined by monitoring the states reached on the property automaton

Our approach is able to:

1. build test cases that make violations of a property observable
2. build test cases that consist in operations leading to a violation of the property

3. build new test cases that improve the error detection capabilities

Outline

e Contextand motivations

* Property pattern language

* Coverage criteria: nominal and robustness

* Experimental results

e Conclusionand perspectives

33

Conclusion

* We have proposed in this paper:
* aproperty-based testing approach using property patterns

e associated coverage criteria (hominal or robustness)

e Usefulfor:
* evaluating a test suite w.r.t. the property

* testselection, to complete a functional test suite

34

Future works

* Improvement of the test generation process
 Combinatorial explosion of test targets

* Unfolding of test scenarios

* Integrateit as a plug-in for Smartesting Certifylt

 Experimentat a larger scale

* national project with Armaments Procurement Agency

35

Thanks for your attention!

Questions?

Video demo? flash me!

Projects websites:
http://disc.univ-fcomte.fr/TASCCC

http://osep.univ-fcomte.fr

36

