
Coverage Criteria for Model-Based Testing

using Property Patterns

Kalou Cabrera Castillos1, Frédéric Dadeau2, Jacques Julliand2

1 LAAS – Toulouse, France

2 FEMTO-ST – Besançon, France

MBT workshop – April 6th, 2014

1

2

Context: Model-Based Testing

Test Architect

Keyword-based
testing

automation

Automation Layer

Test Management
Environment

Test plan &
Test cases

(Semi-) automatic

generation

Coverage
matrix

Executable
Test scripts

Test Results
metrics

Automatic generation

Req./Spec. Test Models

Test Publisher

Test Generator Iterative Process

Test
Automation

Engineer

UML/OCL

3

• Functional test generation from UML/OCL models
• Use of a subset of UML, called UML4ST

• 3 UML diagrams: class diagrams (data model), object (initial state),
and statecharts (dynamics)

• OCL code is used to describe the behaviour of the operations

Context: Smartesting CertifyIt and UML4ST

4 4

Running example: eCinema
context login(in_userName,in_userPassword)::effect:

---@REQ: ACCOUNT_MNGT/LOG
if in_userName = USER_NAMES::INVALID_USER then
 ---@AIM: LOG_Empty_User_Name
 message= MSG::EMPTY_USERNAME
else
 if not all_registered_users->exists(name = in_userName) then
 ---@AIM: LOG_Invalid_User_Name
 message= MSG::UNKNOWN_USER_NAME_PASSWORD
 else
 let user_found:User = all_registered_users->any(name = in_userName) in
 if user_found.password = in_userPassword then
 ---@AIM: LOG_Success
 self.current_user = user_found and
 message = MSG::WELCOME
 else
 ---@AIM: LOG_Invalid_Password
 message = MSG::WRONG_PASSWORD
 endif
 endif
endif

5

• Functional test generation from UML/OCL models
• Use of a subset of UML, called UML4ST

• 3 UML diagrams: class diagrams (data model), object (initial state),
and statecharts (dynamics)

• OCL code is used to describe the behaviour of the operations

• How Smartesting CertifyIt works
• aims at covering of the behaviours of the operations (OCL code

coverage)

• retrieves the traceability requirements (annotations in the code)
covered by the tests

Context: Smartesting CertifyIt and UML4ST

6

• Limitations of automated testing based on requirement
coverage

• test cases with limited size (steps)

• difficulty to take into account the dynamics of the system (must be
hard-coded into the model)

• possible issues with the test target’s reachability

• Our proposal: use temporal test properties

• How to express the test properties easily?

• How to characterize relevant tests?

Motivations

7

Summary of the approach

Coverage
measure

Requirements

UML/OCL
model

Test generator

Tests

TOCL Test Properties

Test scenarios
generator

Reports

Coverage criteria

• Context and motivations

• Property pattern language

• Coverage criteria: nominal and robustness

• Experimental results

• Conclusion and perspectives

8

Outline

• TOCL = Temporal OCL
• overlay of OCL to express temporal properties

• based on Dwyer et al. property patterns [DAC99]

• does not require the use of a complex formalism (e.g. LTL, CTL)

• Property = Pattern + Scope
• Pattern: describes occurrences or orderings of events

• Scope: describes the observation window on which the pattern is
supposed to hold

9

Design of Temporal Properties using TOCL

[DAC99] M. Dwyer, G. Avrunin, and J. Corbett. Patterns in property specifications for finite-state verification. ICSE'99.

Scopes
• globally

• after E1

• after last E1

• before E1

• between E1 and E2

• between last E1 and E2

• after E1 until E2

• after last E1 until E2

10

Temporal Properties in TOCL

E1 E2 E1 E1 E2 E1

Patterns
• always P

• never E

• eventually E at least/at most/exactly k times

• E1 [directly] precedes E2

• E1 [directly] follows E2

11

Temporal Properties in TOCL

Events: operation calls

isCalled(op, pre, post, tags)

becomesTrue(state predicate)

12

Temporal Properties in TOCL

operation
name

precondition (optional)

postcondition (optional)

set of tags/activated behaviors (optional)

Evaluated to false before the event, and true after the event

13

« Tickets can only be bought when the user is connected to the system. »

• Property 1
never isCalled(buyTicket,{@AIM:BUY_Success})
before isCalled(login,{@AIM:LOG_Success})

• Property 2
 never isCalled(buyTicket,{@AIM:BUY_Success})
 after isCalled(logout,{@AIM:LOG_Logout})
 until isCalled(login,{@AIM:LOG_Success})

• Property 3
 eventually isCalled(buyTicket,{@AIM:BUY_Success}) at least 0 times
 between isCalled(login,{@AIM:LOG_Success})
 and isCalled(logout,{@AIM:LOG_Logout})

Temporal Properties in TOCL

14

E0 E2

« Tickets can only be bought when the user is connected to the system. »

• Property 1
never isCalled(buyTicket,{@AIM:BUY_Success})
before isCalled(login,{@AIM:LOG_Success})

• Property 2
 never isCalled(buyTicket,{@AIM:BUY_Success})
 after isCalled(logout,{@AIM:LOG_Logout})
 until isCalled(login,{@AIM:LOG_Success})

• Property 3
 eventually isCalled(buyTicket,{@AIM:BUY_Success}) at least 0 times
 between isCalled(login,{@AIM:LOG_Success})
 and isCalled(logout,{@AIM:LOG_Logout})

Temporal Properties in TOCL

15

E0 E2 E3

« Tickets can only be bought when the user is connected to the system. »

• Property 1
never isCalled(buyTicket,{@AIM:BUY_Success})
before isCalled(login,{@AIM:LOG_Success})

• Property 2
 never isCalled(buyTicket,{@AIM:BUY_Success})
 after isCalled(logout,{@AIM:LOG_Logout})
 until isCalled(login,{@AIM:LOG_Success})

• Property 3
 eventually isCalled(buyTicket,{@AIM:BUY_Success}) at least 0 times
 between isCalled(login,{@AIM:LOG_Success})
 and isCalled(logout,{@AIM:LOG_Logout})

Temporal Properties in TOCL

16

E0 E2 E3

« Tickets can only be bought when the user is connected to the system. »

• Property 1
never isCalled(buyTicket,{@AIM:BUY_Success})
before isCalled(login,{@AIM:LOG_Success})

• Property 2
 never isCalled(buyTicket,{@AIM:BUY_Success})
 after isCalled(logout,{@AIM:LOG_Logout})
 until isCalled(login,{@AIM:LOG_Success})

• Property 3
 eventually isCalled(buyTicket,{@AIM:BUY_Success}) at least 0 times
 between isCalled(login,{@AIM:LOG_Success})
 and isCalled(logout,{@AIM:LOG_Logout})

Temporal Properties in TOCL

• Context and motivations

• Property pattern language

• Coverage criteria: nominal and robustness

• Experimental results

• Conclusion and perspectives

17

Outline

18

• Existing automata coverage criteria are not appropriate

 all transitions are considered equally!

Using the properties for testing

E0 = isCalled(login,{@AIM:LOG_Success})

E2 = isCalled(logout,{@AIM:LOG_Logout})

E3 = isCalled(buyTicket,{@AIM:BUY_Success})

Need to distinguish two different kinds of transition

 α-transitions, labelled by events expressed in the property

 Σ-transitions, the others

Also, the origin of all the transitions (scope/pattern) is known.

19

• New coverage criteria for the property automata

• alpha-transition coverage: coverage of the
transitions labelled by events expressed in
the property

Transitions to cover:
(0, E0, 1)
(1, E3, 1)
(1, E2, 2)
(2, E0, 1)

Using the properties for testing

20

• New coverage criteria for the property automata

• alpha-transition-pairs coverage: coverage of the
pairs of transitions labelled by events expressed
in the property

Pairs of transitions to cover:
< (0, E0, 1) ; (1, E3, 1) >
< (1, E3, 1) ; (1, E2, 2) >
< (1, E2, 2) ; (2, E0, 1) >
< (2, E0, 1) ; (1, E3, 1) >
< (2, E0, 1) ; (1, E2, 2) >

Important: strict successions of α-transitions are not
required (intermediate Σ-transitions are allowed)

Using the properties for testing

21

• New coverage criteria for the property automata

• k-pattern coverage: coverage of the iterations of
the pattern

All pattern-loops have to iterated between 0 and k times.

Applicable to « repeatable » patterns:

 - precedes

 - follows

- eventually at least n times (if n >= k)

Using the properties for testing

22

• New coverage criteria for the property automata

• k-scope coverage: coverage of the iterations of
the scope

All scope-loops have to iterated between 1 and k times.

Applicable to « repeatable » scopes:

- between

- after… until…

Using the properties for testing

Notice: interesting paths end on a final state of the automaton

23

Case of transitions leading to the error state

Using the properties for testing (cont’d)

never isCalled(buyTicket,{@AIM:BUY_Success})
before isCalled(login,{@AIM:LOG_Success})

Can not be activated if we assume that
the model satisfies the property (which
is supposed to be the case)

New coverage criteria are inefficient…

 Specific criterion to test the
robustness of the system w.r.t. the
property

24

Coverage criterion: robustness

Modification of the automaton:
- the error state becomes the final state
- the event labelling the faulty transition is
mutated/weakened to be made activable

E1 : isCalled(buyTicket,{@AIM:BUY_Success})  isCalled(buyTicket)

Possible mutations:
- deletion/negation of predicates (pre/post)
- deletion/change of tags

Using the properties for testing (cont’d)

25

• Two possible uses for these coverage criteria
• Measure the quality of a test suite

• Generate test scenarios

Test scenario:
(Σ - {E0,E1})* . E1 . (Σ - {E0})* . E0

Corresponding test case:
sut.buyTicket(TITLE2);

sut.login(REGISTERED_USER, REGISTERED_PWD)

Functional test suite (computed using CertifyIt)
sut.buyTicket(TITLE2)

Using the properties for testing (cont’d)

• Context and motivations

• Property pattern language

• Coverage criteria: nominal and robustness

• Experimental results

• Conclusion and perspectives

26

Outline

27

• Development of an Eclipse plug-in to support the approach

Experimental results

28

1st experiment: evaluation during industrial projects

• ANR TASCCC* – validation of smart cards security mechanisms for common criteria
evaluation, in partnership with Smartesting, Gemalto (among others)

• ANR OSEP* – validation of cryptographic components, in partnership with Smartesting
and the Armaments Procurement Agency

• Evaluation procedure

• Start with an existing functional model and test suite (CertifyIt)

• Design test properties for the considered models (3 case studies, 3-4 properties each)

• Measure the property coverage criteria satisfaction

Experimental results

*funded by the French National research agency

29

Conclusions of the study

• Language is easy to learn and use to design test properties

• however, sometimes validation engineers tend to write test cases instead of
test properties  unsatisfied properties

• Usefulness of the coverage reports

• shows which part of the properties are not covered by the tests

• Relevance of the coverage criteria

• Property automata are rarely 100% covered by the functional test suite

• “Shows test configurations that one may not easily think of”

• Unintended use of the properties: model validation

• Use of the test cases coverage measure to detect violations of the property
by the model

Experimental results

30

2nd experiment: evaluation of the error detection capabilities (robustness)

• Process:

• Design 6 properties for the eCinema model

• Complete the CertifyIt test suite to satisfy the robustness coverage criterion

• Perform mutations on the model using the following mutation operators

• SSOR : Simple Set Operator Replacement

• SNO : Simple expression Negation Operator

• SAF : Stuck-At-False

• AD : Action Deletion

• Evaluate how many mutants are killed by the tests, and compare to the initial TS

Experimental results

31

Experimental results

C-NE Conform, not reaching the error state of the automaton (eq. mutant or mutant that could not be observed)

NC-NE Not-Conform, not reaching the error state (killed mutant, but not because it violated the property)

NC-E Not-Conform, and reaching the error state (killed mutant, violation of the property, detected by basic observations)

C-E Conform, but reaching an error state (unkilled mutant that violated the property, not detected by basic observations)

Conformance (C)/Non-Conformance (NC): determined using basic observations (comparison of outputs)
Not in Error (NE), in Error state (E): determined by monitoring the states reached on the property automaton

32

Experimental results

Our approach is able to:

2. build test cases that consist in operations leading to a violation of the property

1. build test cases that make violations of a property observable

3. build new test cases that improve the error detection capabilities

Conformance (C)/Non-Conformance (NC): determined using basic observations (comparison of outputs)
Not in Error (NE), in Error state (E): determined by monitoring the states reached on the property automaton

• Context and motivations

• Property pattern language

• Coverage criteria: nominal and robustness

• Experimental results

• Conclusion and perspectives

33

Outline

34

• We have proposed in this paper:

• a property-based testing approach using property patterns

• associated coverage criteria (nominal or robustness)

• Useful for:

• evaluating a test suite w.r.t. the property

• test selection, to complete a functional test suite

Conclusion

35

• Improvement of the test generation process

• Combinatorial explosion of test targets

• Unfolding of test scenarios

• Integrate it as a plug-in for Smartesting CertifyIt

• Experiment at a larger scale

• national project with Armaments Procurement Agency

Future works

36

Thanks for your attention!

Questions?

Projects websites:
http://disc.univ-fcomte.fr/TASCCC

 http://osep.univ-fcomte.fr

Video demo? flash me!

