
Coverage Criteria for Model-Based Testing

using Property Patterns

Kalou Cabrera Castillos1, Frédéric Dadeau2, Jacques Julliand2

1 LAAS – Toulouse, France

2 FEMTO-ST – Besançon, France

MBT workshop – April 6th, 2014

1

2

Context: Model-Based Testing

Test Architect

Keyword-based
testing

automation

Automation Layer

Test Management
Environment

Test plan &
Test cases

(Semi-) automatic

generation

Coverage
matrix

Executable
Test scripts

Test Results
metrics

Automatic generation

Req./Spec. Test Models

Test Publisher

Test Generator Iterative Process

Test
Automation

Engineer

UML/OCL

3

• Functional test generation from UML/OCL models
• Use of a subset of UML, called UML4ST

• 3 UML diagrams: class diagrams (data model), object (initial state),
and statecharts (dynamics)

• OCL code is used to describe the behaviour of the operations

Context: Smartesting CertifyIt and UML4ST

4 4

Running example: eCinema
context login(in_userName,in_userPassword)::effect:

---@REQ: ACCOUNT_MNGT/LOG
if in_userName = USER_NAMES::INVALID_USER then
 ---@AIM: LOG_Empty_User_Name
 message= MSG::EMPTY_USERNAME
else
 if not all_registered_users->exists(name = in_userName) then
 ---@AIM: LOG_Invalid_User_Name
 message= MSG::UNKNOWN_USER_NAME_PASSWORD
 else
 let user_found:User = all_registered_users->any(name = in_userName) in
 if user_found.password = in_userPassword then
 ---@AIM: LOG_Success
 self.current_user = user_found and
 message = MSG::WELCOME
 else
 ---@AIM: LOG_Invalid_Password
 message = MSG::WRONG_PASSWORD
 endif
 endif
endif

5

• Functional test generation from UML/OCL models
• Use of a subset of UML, called UML4ST

• 3 UML diagrams: class diagrams (data model), object (initial state),
and statecharts (dynamics)

• OCL code is used to describe the behaviour of the operations

• How Smartesting CertifyIt works
• aims at covering of the behaviours of the operations (OCL code

coverage)

• retrieves the traceability requirements (annotations in the code)
covered by the tests

Context: Smartesting CertifyIt and UML4ST

6

• Limitations of automated testing based on requirement
coverage

• test cases with limited size (steps)

• difficulty to take into account the dynamics of the system (must be
hard-coded into the model)

• possible issues with the test target’s reachability

• Our proposal: use temporal test properties

• How to express the test properties easily?

• How to characterize relevant tests?

Motivations

7

Summary of the approach

Coverage
measure

Requirements

UML/OCL
model

Test generator

Tests

TOCL Test Properties

Test scenarios
generator

Reports

Coverage criteria

• Context and motivations

• Property pattern language

• Coverage criteria: nominal and robustness

• Experimental results

• Conclusion and perspectives

8

Outline

• TOCL = Temporal OCL
• overlay of OCL to express temporal properties

• based on Dwyer et al. property patterns [DAC99]

• does not require the use of a complex formalism (e.g. LTL, CTL)

• Property = Pattern + Scope
• Pattern: describes occurrences or orderings of events

• Scope: describes the observation window on which the pattern is
supposed to hold

9

Design of Temporal Properties using TOCL

[DAC99] M. Dwyer, G. Avrunin, and J. Corbett. Patterns in property specifications for finite-state verification. ICSE'99.

Scopes
• globally

• after E1

• after last E1

• before E1

• between E1 and E2

• between last E1 and E2

• after E1 until E2

• after last E1 until E2

10

Temporal Properties in TOCL

E1 E2 E1 E1 E2 E1

Patterns
• always P

• never E

• eventually E at least/at most/exactly k times

• E1 [directly] precedes E2

• E1 [directly] follows E2

11

Temporal Properties in TOCL

Events: operation calls

isCalled(op, pre, post, tags)

becomesTrue(state predicate)

12

Temporal Properties in TOCL

operation
name

precondition (optional)

postcondition (optional)

set of tags/activated behaviors (optional)

Evaluated to false before the event, and true after the event

13

« Tickets can only be bought when the user is connected to the system. »

• Property 1
never isCalled(buyTicket,{@AIM:BUY_Success})
before isCalled(login,{@AIM:LOG_Success})

• Property 2
 never isCalled(buyTicket,{@AIM:BUY_Success})
 after isCalled(logout,{@AIM:LOG_Logout})
 until isCalled(login,{@AIM:LOG_Success})

• Property 3
 eventually isCalled(buyTicket,{@AIM:BUY_Success}) at least 0 times
 between isCalled(login,{@AIM:LOG_Success})
 and isCalled(logout,{@AIM:LOG_Logout})

Temporal Properties in TOCL

14

E0 E2

« Tickets can only be bought when the user is connected to the system. »

• Property 1
never isCalled(buyTicket,{@AIM:BUY_Success})
before isCalled(login,{@AIM:LOG_Success})

• Property 2
 never isCalled(buyTicket,{@AIM:BUY_Success})
 after isCalled(logout,{@AIM:LOG_Logout})
 until isCalled(login,{@AIM:LOG_Success})

• Property 3
 eventually isCalled(buyTicket,{@AIM:BUY_Success}) at least 0 times
 between isCalled(login,{@AIM:LOG_Success})
 and isCalled(logout,{@AIM:LOG_Logout})

Temporal Properties in TOCL

15

E0 E2 E3

« Tickets can only be bought when the user is connected to the system. »

• Property 1
never isCalled(buyTicket,{@AIM:BUY_Success})
before isCalled(login,{@AIM:LOG_Success})

• Property 2
 never isCalled(buyTicket,{@AIM:BUY_Success})
 after isCalled(logout,{@AIM:LOG_Logout})
 until isCalled(login,{@AIM:LOG_Success})

• Property 3
 eventually isCalled(buyTicket,{@AIM:BUY_Success}) at least 0 times
 between isCalled(login,{@AIM:LOG_Success})
 and isCalled(logout,{@AIM:LOG_Logout})

Temporal Properties in TOCL

16

E0 E2 E3

« Tickets can only be bought when the user is connected to the system. »

• Property 1
never isCalled(buyTicket,{@AIM:BUY_Success})
before isCalled(login,{@AIM:LOG_Success})

• Property 2
 never isCalled(buyTicket,{@AIM:BUY_Success})
 after isCalled(logout,{@AIM:LOG_Logout})
 until isCalled(login,{@AIM:LOG_Success})

• Property 3
 eventually isCalled(buyTicket,{@AIM:BUY_Success}) at least 0 times
 between isCalled(login,{@AIM:LOG_Success})
 and isCalled(logout,{@AIM:LOG_Logout})

Temporal Properties in TOCL

• Context and motivations

• Property pattern language

• Coverage criteria: nominal and robustness

• Experimental results

• Conclusion and perspectives

17

Outline

18

• Existing automata coverage criteria are not appropriate

 all transitions are considered equally!

Using the properties for testing

E0 = isCalled(login,{@AIM:LOG_Success})

E2 = isCalled(logout,{@AIM:LOG_Logout})

E3 = isCalled(buyTicket,{@AIM:BUY_Success})

Need to distinguish two different kinds of transition

 α-transitions, labelled by events expressed in the property

 Σ-transitions, the others

Also, the origin of all the transitions (scope/pattern) is known.

19

• New coverage criteria for the property automata

• alpha-transition coverage: coverage of the
transitions labelled by events expressed in
the property

Transitions to cover:
(0, E0, 1)
(1, E3, 1)
(1, E2, 2)
(2, E0, 1)

Using the properties for testing

20

• New coverage criteria for the property automata

• alpha-transition-pairs coverage: coverage of the
pairs of transitions labelled by events expressed
in the property

Pairs of transitions to cover:
< (0, E0, 1) ; (1, E3, 1) >
< (1, E3, 1) ; (1, E2, 2) >
< (1, E2, 2) ; (2, E0, 1) >
< (2, E0, 1) ; (1, E3, 1) >
< (2, E0, 1) ; (1, E2, 2) >

Important: strict successions of α-transitions are not
required (intermediate Σ-transitions are allowed)

Using the properties for testing

21

• New coverage criteria for the property automata

• k-pattern coverage: coverage of the iterations of
the pattern

All pattern-loops have to iterated between 0 and k times.

Applicable to « repeatable » patterns:

 - precedes

 - follows

- eventually at least n times (if n >= k)

Using the properties for testing

22

• New coverage criteria for the property automata

• k-scope coverage: coverage of the iterations of
the scope

All scope-loops have to iterated between 1 and k times.

Applicable to « repeatable » scopes:

- between

- after… until…

Using the properties for testing

Notice: interesting paths end on a final state of the automaton

23

Case of transitions leading to the error state

Using the properties for testing (cont’d)

never isCalled(buyTicket,{@AIM:BUY_Success})
before isCalled(login,{@AIM:LOG_Success})

Can not be activated if we assume that
the model satisfies the property (which
is supposed to be the case)

New coverage criteria are inefficient…

 Specific criterion to test the
robustness of the system w.r.t. the
property

24

Coverage criterion: robustness

Modification of the automaton:
- the error state becomes the final state
- the event labelling the faulty transition is
mutated/weakened to be made activable

E1 : isCalled(buyTicket,{@AIM:BUY_Success}) isCalled(buyTicket)

Possible mutations:
- deletion/negation of predicates (pre/post)
- deletion/change of tags

Using the properties for testing (cont’d)

25

• Two possible uses for these coverage criteria
• Measure the quality of a test suite

• Generate test scenarios

Test scenario:
(Σ - {E0,E1})* . E1 . (Σ - {E0})* . E0

Corresponding test case:
sut.buyTicket(TITLE2);

sut.login(REGISTERED_USER, REGISTERED_PWD)

Functional test suite (computed using CertifyIt)
sut.buyTicket(TITLE2)

Using the properties for testing (cont’d)

• Context and motivations

• Property pattern language

• Coverage criteria: nominal and robustness

• Experimental results

• Conclusion and perspectives

26

Outline

27

• Development of an Eclipse plug-in to support the approach

Experimental results

28

1st experiment: evaluation during industrial projects

• ANR TASCCC* – validation of smart cards security mechanisms for common criteria
evaluation, in partnership with Smartesting, Gemalto (among others)

• ANR OSEP* – validation of cryptographic components, in partnership with Smartesting
and the Armaments Procurement Agency

• Evaluation procedure

• Start with an existing functional model and test suite (CertifyIt)

• Design test properties for the considered models (3 case studies, 3-4 properties each)

• Measure the property coverage criteria satisfaction

Experimental results

*funded by the French National research agency

29

Conclusions of the study

• Language is easy to learn and use to design test properties

• however, sometimes validation engineers tend to write test cases instead of
test properties unsatisfied properties

• Usefulness of the coverage reports

• shows which part of the properties are not covered by the tests

• Relevance of the coverage criteria

• Property automata are rarely 100% covered by the functional test suite

• “Shows test configurations that one may not easily think of”

• Unintended use of the properties: model validation

• Use of the test cases coverage measure to detect violations of the property
by the model

Experimental results

30

2nd experiment: evaluation of the error detection capabilities (robustness)

• Process:

• Design 6 properties for the eCinema model

• Complete the CertifyIt test suite to satisfy the robustness coverage criterion

• Perform mutations on the model using the following mutation operators

• SSOR : Simple Set Operator Replacement

• SNO : Simple expression Negation Operator

• SAF : Stuck-At-False

• AD : Action Deletion

• Evaluate how many mutants are killed by the tests, and compare to the initial TS

Experimental results

31

Experimental results

C-NE Conform, not reaching the error state of the automaton (eq. mutant or mutant that could not be observed)

NC-NE Not-Conform, not reaching the error state (killed mutant, but not because it violated the property)

NC-E Not-Conform, and reaching the error state (killed mutant, violation of the property, detected by basic observations)

C-E Conform, but reaching an error state (unkilled mutant that violated the property, not detected by basic observations)

Conformance (C)/Non-Conformance (NC): determined using basic observations (comparison of outputs)
Not in Error (NE), in Error state (E): determined by monitoring the states reached on the property automaton

32

Experimental results

Our approach is able to:

2. build test cases that consist in operations leading to a violation of the property

1. build test cases that make violations of a property observable

3. build new test cases that improve the error detection capabilities

Conformance (C)/Non-Conformance (NC): determined using basic observations (comparison of outputs)
Not in Error (NE), in Error state (E): determined by monitoring the states reached on the property automaton

• Context and motivations

• Property pattern language

• Coverage criteria: nominal and robustness

• Experimental results

• Conclusion and perspectives

33

Outline

34

• We have proposed in this paper:

• a property-based testing approach using property patterns

• associated coverage criteria (nominal or robustness)

• Useful for:

• evaluating a test suite w.r.t. the property

• test selection, to complete a functional test suite

Conclusion

35

• Improvement of the test generation process

• Combinatorial explosion of test targets

• Unfolding of test scenarios

• Integrate it as a plug-in for Smartesting CertifyIt

• Experiment at a larger scale

• national project with Armaments Procurement Agency

Future works

36

Thanks for your attention!

Questions?

Projects websites:
http://disc.univ-fcomte.fr/TASCCC

 http://osep.univ-fcomte.fr

Video demo? flash me!

